Rules of Replacement Flashcards
p ⁘ ~~p
Double Negation (DN)
Double Negation (DN)
p ⁘ ~~p
p & q ⁘ q & p
p v q ⁘ q v p
Commutation (Comm)
p & (q & r) ⁘ (p & q) & r
p v (q v r) ⁘ (p v q) v r
Association (Assoc)
~(p & q) ⁘ ~p v ~q
~(p v q) ⁘ ~p & ~q
DeMorgan (DeM)
Commutation (Comm)
p & q ⁘ q & p
p v q ⁘ q v p
Association (Assoc)
p & (q & r) ⁘ (p & q) & r
p v (q v r) ⁘ (p v q) v r
DeMorgan (DeM)
~(p & q) ⁘ ~p v ~q
~(p v q) ⁘ ~p & ~q
p & (q v r) ⁘ (p & q) v (p & r)
p v (q & r) ⁘ (p v q) & (p v r)
Distribution (Distr)
Distribution (Distr)
p & (q v r) ⁘ (p & q) v (p & r)
p v (q & r) ⁘ (p v q) & (p v r)
p → q ⁘ ~p v r
Implication (Impl)
Implication (Impl)
p → q ⁘ ~p v q
p → q ⁘ ~q → ~p
Transportation (Trans)
Transportation (Trans)
p → q ⁘ ~q → ~p
(p & q) → r ⁘ p → (q → r)
Exportation