Rules of Inference Flashcards
1
Q
p → q
p
∴ q
A
Modus Ponens
2
Q
p → q
~q
∴ ~p
A
Modus Tollens
3
Q
p
∴ p ∨ q
—————————————
q
∴ p ∨ q
A
Generalization
4
Q
p ∧ q
∴ p
—————————————-
p ∧ q
∴ q
A
Specialization
5
Q
p
q
∴ p ∧ q
A
Conjunction
6
Q
p ∨ q
~q
∴ p
—————————————–
p ∨ q
~p
∴ q
A
Elimination
7
Q
p → q
q → r
∴ p → r
A
Transativity
8
Q
p ∨ q
p → r
q → r
∴ r
A
Proof by cases
9
Q
~p → c
∴ p
A
Contradiction Rule
10
Q
∀x P(x)
∴ P(c)
A
Universal Instantiation
11
Q
P(x) for an arbitrarily chosen xεD
∴ ∀x ε D P(x)
A
Universal Generalization
12
Q
∃x P(x)
∴ P(c) for some specific cεD
A
Existential Instantiation
13
Q
P(c) for some c ε D
∴ ∃x ε D P(x)
A
Existential Generalization
14
Q
∀x P(x) → Q(x)
P(c)
∴ Q(c)
A
Universal Modus Ponens
15
Q
∀x P(x) → Q(x)
~Q(c)
∴ ~P(c)
A
Universal Modus Tollens