Review of mathematic Flashcards
a+a=
2a
(a^x)(a^y)=
a^x+y
a(c+d)=
ac+ad
(a+b)(a+b)=
a^2+ab+ab+b^2=
a^2+2ab+b^2
(a+b)^2=
(a+b)(a+b)=
a^2+ab+ab+b^2=
a^2+2ab+b^2
(a-b)^2=
(a-b)(a-b)=
a^2-2ab+b
(a+b)(a-b)=
a^2-b^2
(a^x)^y=
a^x∙y
(ab)^x=
a^x∙b^x
(a/b)^x=
(a^x) / (b^x)
a^0=
1
(a^x) / (a^y)=
a^x-y
a^-x=
1 / a^x
(a/b) + (c/b)=
(a+c) / b
(a/b) + (c/d)=
(ad)/(bd) + (cb)/(bd)=
(ad + bc) / bd
(a/b) - (c/b)=
(a-c) / b
(a/b) - (c/d)=
(ad)/(bd) - (cb)/(bd)=
(ad - bc) / bd
(a/b)(c/d)=
(ac) / (bd)
(a/b) / (c/d)=
(ad) / (bc)
30 degrees
π/6
45 degrees
π/4
60 degrees
π/3
90 degrees
π/2
120 degrees
2π/3
135 degrees
3π/4
150 degrees
5π/6
180 degrees
π
210 degrees
7π/6
225 degrees
5π/4
240 degrees
4π/3
270 degrees
3π/2
300 degrees
5π/3
315 degrees
7π/4
330 degrees
11π/6
360 degrees
2π
What is the formula to find the arc length?
s=rθ where θ is in radian
(x,y) points of the angle π/6
√3/2, 1/2
(x,y) points of the angle π/4
√2/2, √2/2
(x,y) points of the angle π/3
1/2, √3/2
(x,y) points of the angle π/2
0, 1
(x,y) points of the angle 2π/3
-1/2, √3/2