Review Flashcards
E(X)
Nb. E(X) = μx
E{g(X)}
e.g. g(X) = x2
The three expected value rules
- E(X+Y+Z) = E(X) + E(Y) + E(Z)
- E(bX) = bE(X)
- E(b) = b
Two formulae for population vairance of a discrete random variable, σ2 using
- var(X) = σ2 = E {(X - μx)2}
- var(X) = σ2 = E (X2) - μx2
cov (X,Y)
If X and Y are independent
then E[g(X)h(Y)] =
E[g(X)h(Y)] = E[g(X)] E[h(Y)]
Nb. This means that if X and Y are independent then E(XY) = E(X) E(Y)
If X is a random variable with X = μx + u where u is a pure random component, what is the expectation and variance of u?
E(u)=0 and σu2 = σX2 = E(u2)
Covariance of X and Y
Cov(X,Y)= σXY = E{(X-μX)(Y-μY)}
1) If Y = V+W, Cov (X,Y) =
2) If Y=bZ, Cov (X,Y) =
3) If Y = V + b, Cov (X,Y)=
1) If Y = V+W, Cov (X,Y) = Cov(X,V) + Cov (X,W)
2) If Y=bZ, Cov (X,Y) = bCov(X,Z)
3) If Y = V + b, Cov (X,Y) = 0
Formula for the sample covariance of X and Y
sXY = Σ(xi-x̄)(yi-ȳ)/(n-1)
If Y = V + W, var(Y) =
If Y=bZ, then var(Y) =
If Y=b, then var(Y) =
If Y = V + W, var(Y) = var(V) + var(W) +2cov(X,Y)
If Y=bZ, then var(Y) = b2var(Z)
If Y=b, then var(Y) = 0
Prove the covariance of X and Y is zero if X and Y are independent variables
If X and Y are independent,
Cov(X,Y) = E{(X-μx)(Y-μY)} = E(X-μx)E(Y-μY)
= (E(X)-μx)(E(Y)-μY)
= (μx-μx)(μY-μY) = 0
Population correlation coefficient
ρXY = σXY / √(σX2 + σ2Y)
E(x̄) =
σx̄2 =
var(x̄)=σX2/n
Bias is
Bias is the difference between an estimator’s expected value and the value of the population characteristic