Respiration Flashcards
What is respiration?
The process whereby the chemical potential energy stored in complex organic molecules is used to make ATP in living cells.
What is metabolism?
All chemical reactions that occur inside living cells that form an essential part to its survival and the survival of the organism.
What are the two main types of reactions that make up metabolism?
- Catabolism: The breakdown of larger molecules into multiple smaller molecules.
- Anabolism: The build-up of smaller molecules into larger molecules.
What cellular processes require energy from respiration?
- Active transport of substances across a membrane against the concentration requires a lot of energy and is an essential process in living organisms. An example is the mechanism to maintain the resting potential of neurones using Na+/K+ pumps.
- Secretion by exocytosis requires energy and is the primary secretion mechanism for larger molecules.
- Endocytosis also requires energy.
- Some anabolic reactions such as protein synthesis and cellulose synthesis require energy.
- DNA replication and many processes that happen pre-cellular replication require energy.
- Movement involving the cytoskeleton, including flagella/undulipodia, cilia and microtubules all require energy.
- Muscular contractions also requires energy.
- Other types of metabolic reactions such as phosphorylation reactions that are vital for survival also require energy.
- Heat energy released by respiration is used to maintain constant core temperature in endotherms in order to maintain constant rates to enzyme-catalysed reactions.
Where does most energy in living things come from?
- Most energy in living things originate as light energy from the sun.
- Photoautotrophs (producers) carry out photosynthesis which converts light energy into chemical potential energy stored in large organic molecules such as carbohydrates.
- These producers are then consumed by consumers that use respiration to break down these large organic molecules into small inorganic molecules, releasing the stored energy as heat and chemical energy stored in ATP.
What is the structure of ATP?
ATP (Adenosine Triphosphate) consists of an adenosine group (adenine bonded to a ribose sugar), bonded to 3 phosphate (phosphoryl) groups.
What is the role of ATP in living organisms?
- ATP is the universal energy currency in cells.
- It is used in all energy-requiring reactions as a source of energy in all organisms.
- It acts as an intermediate molecule between all energy-releasing processes and energy-requiring processes in a cell.
How does ATP store energy from respiration?
Respiration occurs in many small steps that release small amounts of energy each time. This energy is used to phosphorylate ADP into ATP, storing the energy, which can be hydrolysed in an energy-requiring reaction. However, ATP is never stored and rarely imported and each cell only has a small amount, so it needs to be regenerated rapidly by respiration in order to keep up in demand.
What are the 4 stages of aerobic respiration?
Common reaction:
1. Glycolysis - Occurs in cytoplasm.
Aerobic respiration only:
2. Link reaction - Occurs in matrix of mitochondria.
3. Krebs cycle - Occurs in matrix of mitochondria.
4. Oxidative phosphorylation - Occurs in cristae, folded inner mitochondrial membrane.
What are coenzymes?
Molecules that are not part of the enzyme but are required in order for an enzyme to function properly. This makes them cofactors to enzymes.
What coenzymes are involved in respiration?
- NAD (Nicotinamide Adenine Dinucleotide).
- FAD (Flavin Adenine Dinucleotide).
- Coenzyme A.
Why are coenzymes involved in respiration?
During most stages of respiration, oxidation reactions occur whereby hydrogen atoms are removed by the process of dehydrogenation. These reactions are carried out by dehydrogenase enzymes. However, the reactions release hydrogen atoms which are particularly unstable and cannot exist on their own, so dehydrogenation reactions cannot occur. Coenzymes NAD and FAD combine with these H atoms to form reduced NAD and FAD. This ensures that dehydrogenation reactions can occur when catalysed by dehydrogenase enzymes, making them coenzymes to dehydrogenase. They also act as carriers of H atoms to the cristae where they are used in oxidative phosphorylation.
How many hydrogen atoms can one NAD molecule accept?
2
What is glycolysis?
The metabolic pathway where each glucose molecule is broken down into 2, 3 carbon pyruvate molecules.
Where does glycolysis take place?
In the cytoplasm of respiring cells.
Why is glycolysis known as the ‘common’ pathway?
It does not require oxygen and is the only reaction pathway that takes place both in aerobic and anaerobic respiration.
What are the stages in glycolysis?
Phosphorylation:
- 1 ATP molecule is hydrolysed to ADP and Pi. Pi attached to carbon-6 on glucose to form glucose 6-phosphate. This process is called phosphorylation.
- Glucose 6-phosphate is converted to fructose 6- phosphate.
- Another ATP molecule is hydrolysed and the Pi attaches to carbon-1 to form fructose 1,6-bisphosphate.
- Energy released from ATP hydrolysis used to activate molecule to form hexose 1,6-bisphosphate to prevent molecule from leaving cell.
- 2 ATP molecules are used to form hexose 1,6-bisphosphate.
Lysis of hexose 1,6-bisphosphate:
6. Hexose 1,6-bisphosphate splits into 2 molecules of triose phosphate.
Oxidation of triose phosphate:
- Dehydrogenase enzymes oxidise each triose phosphate molecule by removing 2 hydrogen atoms from each.
- Hydrogen atoms combine with NAD molecules to form reduced NAD.
- ADP and Pi are recombined to form ATP in a process called substrate level phosphorylation.
- 2 triose phosphate molecules are converted to 2 oxidised intermediate compounds, with the formation of 2 ATP and 2 reduced NAD molecules.
Conversion of triose phosphate to pyruvate:
- A series of 4 enzyme catalysed reaction convert the intermediate compound into a pyruvste molecule.
- A further 2 ATP molecules are formed through substrate level phosporylation.
- 2 intermediate molecules are converted to 2 pyruvate molecules with the formation of 2 ATP molecules.
What is the overall process of glycolysis?
Glucose + 2 x NAD + 2 x ATP —> 2 x pyruvate + 2 x reduced NAD + 4 x ATP
What is the net gain in ATP through glycolysis?
2
What types of cells have many mitochondria?
Cells that characteristically have high energy requirements. Including muscle cells, brain cells, ciliated epithelial cells and PCT epithelial cells.