Replacement Rules Flashcards
example:
Р == (p v p)
Р == (p ^ p)
idempotence
examples:
(p v q) == (q v p)
(p ^ q) == (q ^ p)
commutativity
examples:
[p v (q v r)] == [(p v q) v r]
[(p ^ q) ^ r)] == [(p ^ q) ^ r]
associativity
¬(p v q) == ¬p ^ ¬q
¬(p ^ q) == ¬p v ¬q
De Morgan’s Law
[p v (q ^ r)] == (p v q) ^ (p v r)];
distributivity of v over ^
[p ^ (q v r)] == (p ^ q) v (p ^ r)];
distributivity of ^ over v
P == ¬(¬P)
double negation
(p -> q) == (¬p v q)
Material Implication
(p q) == [(p –> q) ^ (q –> p)
material equivalence
[(p –> q) ^ (p –> ¬q)] == ¬p
absurdity
p –> q == ¬q –> ¬p
contrapositive or transposition
p ^ ¬p == c
p v ¬p == t
negation laws
p ^ c == c
p v t == t
universal bound laws
p ^ t == p
p v c == p
identity laws
p v (p ^ q) == p p ^ (p v q) == p
absorption laws