Quiz 1 Prep Flashcards

1
Q

What the general principle from describing dimensions of things?

A

Everytime you add a dimension, you remove an equation:
ex. to describe something thats one dimension requires 2 equations and two dimensions requires 1 equation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Circle Formula for R^2

A

(x-a)^2 + (y-b)^2 = r^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Circle Formula for R^3

A

(x-a)^2 + (y-b)^2 + (x-c)^2= r^2. It’s actually a sphere in 3D. We know this b/c all the coefficents are one.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What’s a unit vector?

A

any vector with a length of 1. Ex <3/5, 4/5> and <-2/3, 2/3, 1/3> You can try with distance formula

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Idea behind vector addition and subtraction?

A

when you add or subtract, each coordinate corresponds to another. a + b = <a_1+b_1, a_2 + b_2, a_3+b_3>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

idea behind scalar multiplication

A

K∈R. ka = <ka_1, ka_2, ka_3>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

when are two vectors parallel?

A

when they point the exact same or opposite direction and if there is a k ≠ 0 so that vector v =k(vector w)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

when do 2 vectors point in the same direction?

A

when there is a k > 0 so that vector v =k(vector w). (When one is scaled of another)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

given a vector v and a number, k > 0, what is the vector of length K in the same direction as vector v?

A

new vector (w) = (k/length of vector v) vector v

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Formula for dot product

A

v = <a,b,c> w= <x,y,z>
ax + by + cz <- Don’t expect a vector, expect a number.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

how do you find the angle b/w two vectors

A

vectors v * w = lengths of vectors v * w * cos(θ). defining characteristic of the dot product

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

when vectors orthogonal?

A

when the dot product b/w the two = 0/meet at a right angle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

what is a position vector?

A

vector that starts at the origin (0,0,0)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

standard unit vectors

A

i = <1, 0, 0>
j = <0, 1, 0>
k = <0, 0, 1>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly