QUESTION 2 Flashcards
INVERTIBLE OPERATOR
T∈B(X,Y) if
1. T:X->Y is bijection
2. T^(-1)∈B(Y,X)
CHARACTERISATION INVERSION
T∈B(X,Y) invertible
⟺
∃S∈B(Y,X): ST=I_X and TS=I_Y
INVERSION BY GEOMETRIC SERIES THEOREM
if X is banach and T∈B(X), then
Σ||T^k|| < ∞
⟹
(I-T)^(-1) = ΣT^k∈B(X)
RESOLVENT SET
ρ(T) = {λ∈K : (T-λ)^(-1) ∈ B(X)}
i.e. all λ such that (T-λ) is invertible and (T-λ)^(-1) is bounded
λ ∈ ρ(T )
if (T − λ)^(−1) is bounded
SPECTRUM
δ(T) = K\ρ(T)
EIGENVALUE of T∈B(X)
λ∈K if ∃x≠0: (T-λ)x=0
EIGENSPACE of T∈B(X)
ker(T-λ)
POINT SPECTRUM of T∈B(X)
δ_p(T)={eigenvalues of T}
APPROXIMATE EIGENVALUE of T
λ∈K if ∃(xn): ||xn||=1, ∀n∈N
and (T-λ)xn -> 0
SPECTRAL MAPPING THEOREM
assume X is banach over K=C and T∈B(X)
for any polynomial p:K->K we have
δ(p(T)) = {p(λ) : λ∈δ(T)}
Tx= λx
⟹ x=0
then no eigenvalues
SPECTRUM OF IDENTITY OPERATOR
σ(I)={1}