QP2 Flashcards

1
Q

Nucleus of the atom diameter

A

approx. 10^-14m

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Electrons orbit the nucleus at a distance of

A

approx. 10^-10m

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

The electrons and the nucleus should have been drawn to each other due to them being opposite charges. What did Rutherford suggest to this

A

Rutherford suggested that the electrons orbited the nucleus, but in doing so they should have lost energy and slowly circled down into the nucleus.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What was a consequence of Rutherford’s model of the atom

A

That as the electrons orbited down, their angular speeds would change continuously. However, observed spectra consisted of discrete energy lines, which disagreed with Rutherford’s suggestion.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What was Bohr’s solution for the model of the atom?

A

Bohr suggested stable orbits, meaning electrons would orbit the nucleus at a fixed distance and would not radiate energy.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Bohr’s model of the atom

A

Bohr’s model stated that there was a definite energy associated with each available stable orbit, and an electron only emits energy if it moves from one orbit to another.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What is the energy emitted with an electron moving from one orbit to another?

A

The energy emitted in such a transition is in the form of a photon, and the energy of that photon is given by the equation: E = hf = E_initial - E_final

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What is the angular momentum of an electron?

A

The angular momentum of the electron is a multiple of ℏ, i.e its quantised.
We know: L = mvr = nℏ.
Where each value of n (1, 2, 3… ) corresponds to a valid orbit of radius r_n and corresponding velocity v_n.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Principle Quantum Number definition

A

The Principle Quantum Number is the value of n for each orbit.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Hydrogen atom composition

A

The hydrogen atom is the simplest in the periodic table. With one electron orbiting around a nucleus containing one proton.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Force for an electron in a given orbit (for Hydrogen Atom)

A

For the radius to remain constant in the Bohr model, the force must provide exactly the radial motion force. So, for the hydrogen atom, where both charges involved carry the same magnitude of charge e…
F = mv^2 / r = 1/4pƐ . e^2/r^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Kinetic Energy for an electron in a given orbit

A

Kn = 0/5mv^2 = 1/Ɛ^2 . me^4 / 8n^2h^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Potential Energy for an electron in a given orbit

A

Un = -1/4pƐ . e^2/r = -1/Ɛ^2 . me^4 / 4n^2h^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

The total Energy for an electron in a given orbit

A

En = Kn + Un = -1/Ɛ^2 . me^4 / 8n^2h^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What do we apply the Schrodinger equation for?

A

As Bohr models isn’t perfect, we apply the Schrodinger equation to find the wave functions for states with definite energy values for the hydrogen atom.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Reduced Mass

A

The electron does not orbit the proton, they both orbit their common centre of mass. Thus, we use the reduced mass, which is when you have two masses orbiting each other, then the reduced mass is given by:
m_r = m1m2 / (m1+ m2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

The Schrodinger equation for the hydrogen atom solutions:

A

The solutions are obtained by separating the variables involved. This means we express the wave function as a product of three function, one associated with each of the coordinates: y(r,q,f) = R(r)Q(q)F(f)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Boundary equation for the Schrodinger equation for the hydrogen atom.

A

-R(r) tends to zero as r increases: this is because we are dealing with bound states that are close to the nucleus of the atom.
-F(f) must be periodic, i.e. it must repeat every 360 degrees or 2p radians: for example, (r,q,f) and (r,q,f + 2p) describe the same point, so F(f + 2p) = F(f). Also, the solutions to the functions must be finite – i.e. cannot take zero or infinity as solutions.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Solving the boundary conditions produces a relation for the energy levels as follows:

A

En = - 1/(4pƐ_o)^2 . me^4 / 2n^2h^2 = -13.60 eV / n^2

Where n is the principle quantum number of the energy level En. The negative sign indicates that the electrons are in bound states, as you need to provide a positive energy to remove the electron.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Angular momentum formula

A

L = ( l( l+1) )^0.5

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Orbital angular momentum quantum number (l)

A

Given by: l = 0, 1, 2, … , n - 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

There are n different possible values of …

A

L for the nth energy level. The Bohr model said there was one value: Ln = nℏ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Z - component of angular momentum is given by:

A

Lz = mlℏ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Orbital magnetic quantum number

A

ml also called the orbital angular momentum projection quantum number. It can take values m = 0, ±1, ±2, … , ±l.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

Condition for L and Lz magnitudes

A

The magnitude of the z - component of the orbital angular momentum is always less than the magnitude of the total orbital angular momentum vector is a requirement of the uncertainty principle. E.g the component Lz can never be quite as big as L itself, unless both of them are zero.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

The angle between L and Lz is given by;

A

θ = arccos ( Lz / L)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Maximum angle between L and Lz

A

This occurs of the smallest value of Lz

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Minimum angle between L and Lz

A

This occurs for the largest value of Lz

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

We will never know the precise direction of the orbital angular momentum because …

A

If we knew the direction of the Lz then we could define that direction to be the z - axis and so L = Lz. Comparing to L = mvr, all the motion of the particle would be in the x-y plane, then the z-component of the linear momentum would have to be zero and carry no uncertainty. But this would require that z has an infinite uncertainty by the uncertainty principle, which is impossible for a localised state.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

Instead of defining the precise directions of L…

A

We end up drawing cones of direction of the vector L.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

In quantum mechanics we can describe the interaction of charge particles in terms…

A

of the emission and absorption of photons. For example, two electrons repelling each other can be thought of as one throwing out a photon, which the second one then catches.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

The uncertainty principle (for energy) states:

A

That a state that exists for a short time Δt has an uncertainty in its energy ΔE such that ΔEΔt ≥ ℏ/2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

The uncertainty principle (for energy) allows the creation of …

A

A photon with energy ΔE, provided that it lives no longer than the time Δt. This type of photon is called a virtual photon.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

Photons mediate …

A

electromagnetic forces

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

Two nucleons can mediate…

A

nuclear forces

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

The nuclear force between two nucleons ( protons or neutrons) can be described by…

A

Potential energy U(r) which is given in the formula sheet with the weird exponential of r / ro. In this equation, f represents the strength of the interaction and r0 its range. r is the distance at which the potential is measured.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

The Heisenberg uncertainty principle states…

A

that the exact position of a particle and its momentum cannot be known at the same time. This is due to the that that in quantum theory, quantum particles do not have exact properties only probabilities.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

The four types of particle interactions are…

A
  1. The strong interaction
  2. The electromagnetic interaction
  3. The weak interaction
  4. The gravitational interaction
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
39
Q

The mediating particle for the electromagnetic interaction is … with spin …

A

the photon with spin 1s

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
40
Q

The particle for the gravitational interaction is the … with spin …

A

Graviton with spin 2. Note that is it currently a hypothetical particle, since the force is very weak

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
41
Q

The strong interaction is responsible for …

A

the nuclear force and also for the production of pions and several other particles in high - energy collisions.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
42
Q

The mediating particle for the strong force is…

A

the gluon, however the force between nucleons is more easily described in terms of mesons as the mediators.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
43
Q

The Potential energy U(r) function is also a possible potential energy function for the …

A

nuclear force. The strength of the interaction is described by the constant f^2, which has units of energy times distance.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
44
Q

A better basis for comparison with other forces is the dimensionless ratio…

A

f^2 / ℏc
called the coupling constant for the interaction. The observed behaviour of nuclear forces suggests that this ratio is roughly equal to 1.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
45
Q

The dimensionless coupling constant for electromagnetic interactions is …

A

1/4πε . e^2 / ℏc = 7.297 x 10^-3 = 1/137.0
(in formula sheet)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
46
Q

The weak interaction is responsible for…

A

beta decay , such as the conversion of a neutron into a proton, an electron and an anti-neutrino.
It is also responsible for the decay of many unstable particles (e.g. pions into muons).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
47
Q

The force mediating particles for the weak force are

A

W+ , W-, Z^0
They are short-lived particles.
They have spin 1.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
48
Q

Charge of and mass of the weak mediating force particles

A

W± have mass 80.4 GeV/c^2 and charge ±e
Z^0 have mass 91.2 GeV/c^2 and charge 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
49
Q

Mass, charge and spin of force mediating particles not including weak force

A

Gluon: 0 , 0 , 1
Photon: 0 , 0, 1
Graviton: 0 , 0, 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
50
Q

Strength relative to Strong for interactions

A

Strong: 1
Electromagnetic: 1/137
Weak: 10^-9
Gravitational: 10^-38

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
51
Q

Range of interactions

A

Strong: Short (~1 fm)
Electromagnetic: Long (1/r^2)
Weak: Short (~0.001fm)
Gravitational: Long (1/r^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
52
Q

Which particles are known as the “light ones” ?

A

The leptons e.g electrons

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
53
Q

What makes up the hadrons

A

Mesons and Baryons (these consist of quark)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
54
Q

What makes up a meson

A

A quark and anti quark

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
55
Q

What makes up a Baryon

A

3 quarks
(most common for protons and neutrons)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
56
Q

What are the different types of quark?

A

Up (u)
Down (d)
Top (t)
bottom (b)
charm (c)
strange (s)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
57
Q

what is a boson

A

A force mediating particle such as the photon, graviton, gluon and [W^ {+}, W^ {-}, Z] bosons.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
58
Q

What spin do fermions have

A

half - integer spins

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
59
Q

What is spin?

A

A property of a particle relating to its orientation.
Spin is an intrinsic property of particles that mathematically behaves like angular momentum.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
60
Q

What spin do bosons have?

A

Zero or integer spins.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
61
Q

What types of particles obey the exclusion principle?

A

Fermions obey the exclusion principle, bosons don’t.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
62
Q

Types of Lepton

A

The electron, muon and tau particles, and their associated neutrinos.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
63
Q

Types of lepton numbers

A

we have 3 lepton numbers
Le

Lt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
64
Q

What do leptons obey

A

Leptons obey a conservation principle
Each lepton number is separately conserved.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
65
Q

What numbers are the lepton numbers assigned with

A

The electron and the electron neutrino are
assigned
Le = 1, and their anti-particles are given Le = -1.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
66
Q

The wave functions for the hydrogen atom are determined by the values of the three
quantum numbers what are these and meaning

A

The quantum numbers are: n, l, ml.
Where n determines the energy values En
l sets the magnitude of the orbital angular momentum
ml fixes the values of the (arbitrarily
chosen) z-component of the angular momentum.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
67
Q

What is degeneracy?

A

The existence of more than one distinct state with the same energy.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
68
Q

States with various values of the orbital quantum number l are often labelled with letters, according to the following scheme …

A

l = 0: s states
l =1: p states
l = 2: d states
l = 3: f states
l = 4: g states
l = 5: h states

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
69
Q

What is a shell

A

A shell is the area of space associated with a given n shell.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
70
Q

Types of shells:

A

n =1: K shell
n = 2: L shell
n = 3: M shell
n = 4: N shell
and so on alphabetically

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
71
Q

Angular momentum has two components:

A

Spin and orbital angular momentum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
72
Q

The spin angular momentum of an electron is given by:

A

S and it is quantised, e.g it can only take specific values

73
Q

The z-component of the vector S can by found by…

A

Sz = ± ℏ / 2 and Sz = msℏ

74
Q

The magnitude of spin angular momentum [S] is given by the expression:

A

S = [S] = (0.5(0.5+1))^0.5 . ℏ = (3/4)^0.5 ℏ

(similar to orbital angular momentum, but instead of l its the spin quantum number, which is s = 0.5)

75
Q

The quantum number ms specifies…

A

the electron spin orientation. It can take values 0.5 or -0.5 .

76
Q

The spin angular momentum vector S can have only two orientations in space relative to the x-axis:

A
  • Spin up - the z-component is + ℏ / 2
  • Spin down - the z-component is - ℏ / 2
77
Q

The total angular momentum J is defined as:

A

J = L + S

78
Q

The magnitude of the total angular momentum J is given by:

A

J = (j(j+1))^0.5 .ℏ
Where j is another quantum number

79
Q

States of the quantum number j:

A

We can then have states in which
j = [l ±1/2]. The l + 1/2 states correspond to the case in which the vectors L and S have parallel z - components, while for the l - 1/2 states, L and S have anti-parallel z components.

80
Q

Explain spectroscopic notation: Example 2^P_1/ 2

A

The superscript is the number of possible spin orientations, in this example, there are spin 2 states.
The subscript is the value of j, this example, j = 1/2

81
Q

Quarks carry charges that have magnitudes of…

A

1/3e or 2/3e

82
Q

Quarks obey the conservation of…

A

baryon number

83
Q

Baryon numbers for quarks

A

Each quark has a fractional value of 1/3 and each antiquark has a baryon-number of -1/3.
Baryon number is conserved in all interactions.

84
Q

Spin angular momentum of a meson

A

they can have spin angular momentum components parallel to form a spin - 1 meson or antiparallel to form a spin - 0 meson.

85
Q

What is the baryon number of a meson

A

In a meson, a quark and antiquark combine with net baryon number 0

86
Q

Baryon number of a baryon

A

The 3 quarks combine to make a net baryon number 1

87
Q

What is the spin of a baryon

A

the quarks combine to make a spin-half baryon or spin 3/2 baryon

88
Q

Which quarks have charge Q/e of 2/3 ?

A

Up , charm, top

89
Q

Which quarks have charge Q/e of -1/3 ?

A

Down, strange, bottom

90
Q

All quarks have spin…

A

a half

91
Q

All quarks have a baryon number of

A

1/3

92
Q

The antiquarks take … values of Q, B, S, C, B’ and T.

A

opposite

93
Q

Strangeness, charm, Bottomness and Topness take values of…

A

S = -1
C = 1
B’ = 1 or -1 (depends)
T = 1

94
Q

Quarks come in three colours…

A

Red , blue and green
a baryon will always contain one of each

95
Q

A gluon contains a colour…

A

-anticolour pair

96
Q

A gluon transmits colour when exchanged and colour is always …

A

conserved during emission and absorption of a gluon by a quark

97
Q

The gluon-exchange process changes the colours of the quarks in such a way that…

A

there is always one quark of each colour in every baryon

98
Q

The colour of an individual quark changes continually as…

A

gluons are exchanged

99
Q

Mesons have … net colour

A

no

100
Q

Mesons have spin …

A

0 or 1

101
Q

are mesons stable?

A

no, there are no stable mesons they all decay

102
Q

Baryons include the nucleons and several particles called hyperons, including …

A

sigma Σ
lambda Λ
doublet of xi Ξ
omega Ω

103
Q

A hyperon is …

A

any baryon containing one or more strange quarks, but no charm, bottom, or top quark.

104
Q

Baryons have a baryon number of…

A

B = 1 or B = -1

105
Q

Baryons have a spin of …

A

a half

106
Q

The only stable baryon is

A

the proton

107
Q

how do you know if a particle is its own antiparticle?

A

if its quark content is the same , means same particle and anti particle

108
Q

Example, A Σ decays into a Λ and a photon. Assuming that the kinetic energy of the Λ is negligible, determine the energy of the emitted photon.

A

As the kinetic energy of Λ is negligible, the kinetic energy of the photon is just the difference of the energy of the masses. Apply E = mc^2 to both Σ and Λ, the difference of mass is the energy of the photon.

109
Q

wavelength and momentum formula

A

λ = ℎ / p

110
Q

energy and wavelength formula

A

𝐸 = ℎ𝑓 = ℎ𝑐 /λ

111
Q

energy and momentum formula

A

𝐸 = ℎ𝑐 / λ =ℎ𝑐 / ℎ/𝑝
𝐸 = 𝑝𝑐

112
Q

is it reasonable to ignore the kinetic energy of Λ ?

A

We can check this by finding the kinetic energy of Λ. Results shows that it is a lot less than the energy of the photon, so we can ignore it.

113
Q

Hyperons Λ^0 and Σ^±0 were assigned a strangeness quantum number of

A

S = -1 and their associated K^0 and K^+ mesons were assigned S = +1.

114
Q

Strangeness is conserved in production processes, for example …

A

π− + p -> Σ + K+

115
Q

When strange particles decay individually, strangeness is…

A

not usually conserved

116
Q

The standard model includes the 3 families of particles:

A

(1) the 6 leptons, which don’t interact via the strong interaction
(2) the 6 quarks, from which all hadrons are made
(3) the particles that mediate the various interactions. These mediators are gluons for the strong interaction among quarks, photons for the electromagnetic interaction, the W± and Z0 particles for the weak interaction. Plus the Higgs boson (needed for non-zero masses).

Note that the standard model does not include gravity.

117
Q

The electroweak unification - unite the electromagnetic and weak interactions

A

The idea is that at low energies, the electromagnetic and weak interactions behave quite differently due to the mass difference between the photons (which have no mass) and the bosons (which have masses of around 100 GeV/c^2). This difference, though, disappears at high energy, and the two merge into a single interaction.

118
Q

Grand unified theories

A

Some of these theories predict that protons are not, in fact, stable, but decay, violating the conservation of baryon number. The predictions put the lifetime of the proton at 1028 years. Compare this with the age of the universe, thought to be around 1.5 × 10^10 years. So to observe any such decays, you’d need 6 tonnes of protons to see a decay rate of 1 a day.

119
Q

Supersymmetric theories and TOEs - The theory of everything

A

The ultimate goal is to combine all four interactions under one theory. However, to do this it seems you may need a space-time continuum with more than 4 dimensions. The extra dimensions are “rolled up” into extremely tiny structure that we ordinarily do not notice.

120
Q

Many-electron atoms

A

Schrodinger’s equation can be applied to the general atom, however the complexity of the analysis of this is so extreme that it has not been solved exactly for even the helium atom, which has only 2 electrons. The problem arises because each of the Z electrons in a many-electron atom interacts with not only every proton in the nucleus, but also with every other electron. The number of variables is immense.

The simplest approximation is to assume that when an electron moves, it ignores the effects of all other electrons and only feels the influence of the nucleus it orbits, which is taken to be a point charge.

121
Q

The central-field approximation

A

Here we think of all the electrons together as making up a charge cloud that is, on average, spherically symmetric. We can then think of each individual electron as moving in the total electric field due to the nucleus and this averaged out cloud of all the other electrons.
There is then a corresponding spherically symmetric potential energy function, U(r).
The energy of a state now depends on both n and l, rather than just on n as with hydrogen, due to the change in U(r).

122
Q

restrictions on values of the quantum numbers:

A

𝑛 ≥ 1
0 ≤ 𝑙 ≤ 𝑛 − 1
|𝑚𝑙| ≤ 𝑙
𝑚𝑠 = ±1/2

123
Q

We might expect that in the ground state of a complex atom, all the electrons should be in this lowest state. If so we would only see …

A

gradual changes in physical and chemical properties when we look at the behaviour of atoms with increasing numbers of electrons, Z.
Such gradual changes are not seen though. Instead properties of elements vary widely from one to the next.

124
Q

This is where Wolfgang Pauli came in. His exclusion principle states:

A

“No two electrons can occupy the same quantum-mechanical state in a given system”

“No two electrons in an atom can have the same values of all four quantum numbers n,l,ml,ms”.

125
Q

the exclusion principle puts a limit on …

A

the amount that electron wave functions can overlap

126
Q

For each state ms can be …

A

1/2 or -1/2

127
Q

electrons with larger values of n are concentrated at …

A

larger distances from the nucleus

128
Q

the exclusion principle forbids multiple occupancy of a state, this means that when an atom has more than 2 electrons…

A

they can’t all huddle down in the low-energy n = 1
states nearest to the nucleus because there are only
two of these states

129
Q

Each value of n corresponds roughly to a region of space around the nucleus in the form of a

A

spherical shell

130
Q

States with the same n but different l form

A

subshells

131
Q

(forming periodic table from exclusion principle)
To obtain the ground state of the atom as a whole we …

A

we fill the lowest energy electron states – those closest to the nucleus with the smallest values of n and l – first, and we use successively higher states until all the electrons are in place

132
Q

For hydrogen, the ground state is
1s, what are the other quantum numbers?

A

the single electron is in a state
n =1, l = 0, ml = 0 and ms = ±1/2.

133
Q

For helium, Z=2, the ground state is 1s^2, where the superscript 2 means that

A

there are two electrons in the 1s subshell. Both electrons in the 1s states have opposite spins, one has ms = - 1/2 and the other ms = +1/2.

134
Q

Helium is a noble gas meaning,

A

it has no tendency to gain or lose electrons and it forms no compounds.

135
Q

Lithium, with Z = 3, has three electrons. What are the ground states?

A

In its ground states, two are in 1s states and one is in a 2s state, so we denote the lithium ground state as
1s^2 2s.
On average, the 2s electron is considerably further from the nucleus than the 1s electrons are.

136
Q

lithium is an alkali metal meaning …

A

It forms ionic compounds in which each lithium atom loses an electron and has a valence of +1

137
Q

What is valence?

A

the property of an element that determines the number of other atoms with which an atom of the element can combine
in an electron, the outermost energy level of an atom helps to form chemical bonds, this outer shell contains the valence electron

138
Q

What is Z (for atoms)?

A

The atomic number

139
Q

Beryllium with an atomic number of Z = 4. Its ground state is 1s^2 2s^2, with its two valence electrons filling the s subshell of the L shell.

A

Beryllium is the first of the alkaline
earth elements, forming ionic compounds in which the valence of the atoms is +2.

140
Q

each column in the periodic table represents a…

A

specific group. And the similarity of the elements in these groups is explained by the similarity in outer-electron configuration

141
Q

All noble gases (helium, neon, …, radon) have…

A

filled shell or filled shell plus filled p subshell configurations.

142
Q

All alkali metals (lithium, sodium, …, francium) have…

A

the “noble gas plus 1” pattern

143
Q

All alkali Earth metals (beryllium, magnesium, …, radium) have

A

the “noble gas plus 2” pattern

144
Q

All halogens (fluorine, chlorine, …, astatine) have…

A

the “noble gas minus 1” pattern

145
Q

Doppler shift relationship

A

Relationship between the wavelength λ0 of light measured now from a source receding at a speed
v and the wavelength λ𝑠 measured in the rest frame of the source when it was emitted:

λo = λ𝑠√𝑐+𝑣 / 𝑐−v

146
Q

What is redshift

A

Wavelengths from receding sources are always shifted toward longer wavelengths – this increase in wavelength is called redshift.

147
Q

The speed or recession is found by…

A

rearranging the doppler shift formula for v

148
Q

Hubbles law

A

Analysis of redshifts from many distant galaxies led
Edwin Hubble to a remarkable conclusion: The
speed of recession v of a galaxy is proportional to
its distance r from us.

This relationship is now called Hubble’s Law, and is
expressed by the following equation:
v = Ho r

Where H0 is known as the Hubble constant.

149
Q

Determining this constant has been a key goal
of the Hubble Space Telescope, which can …

A

measure distances to galaxies with extreme accuracy.

150
Q

Astronomical distances are often measures in parsecs.

A

1 parsec = 1 pc = 1/3600 = 1 arcsecond

151
Q

One parsec is the distance at which there is one arcsecond angular separation
between two objects that are 1.5 × 1011m apart, such as

A

the average distance between the
Earth and the Sun.

152
Q

One parsec is equal to … lightyears

A

3.26

153
Q

The cosmological principle

A

on average the universe looks the same from all locations (as distant galaxies appear to be receding from us in all directions)
matter is distributed uniformly

154
Q

based off the cosmological principle, it appears that the Hubble constant is constant in …

A

space although not necessarily constant in time, and
the laws of physics are the same everywhere

155
Q

Big bang theory - what is it

A

the theory states that around 14 billion years ago all matter and energy in the universe was at a point of infinite density and temperature. It then expanded rapidly. Eventually stars, galaxies and planets formed. This expansion was the beginning of time and continues to this day.

156
Q

When did the expansion of the universe begin?

A

v = H0r and r = vt

𝑡 = 𝑟 / 𝑣 = 𝑟 / 𝐻0𝑟 = 1/𝐻0 = 1.4 × 10^10 years

So this law predicts an age of the universe at 14 billion years

157
Q

The expanding space - what is it

A

An alternative interpretation of the way the universe is expanding distance is that distance objects increase in distance which comes from the expansion of space itself, and everything in intergalactic space, including the wavelengths of light travelling to us from distant sources.

158
Q

How to understand the expanding space

A

Consider a two-dimensional world. You could plot
any position on this two-dimensional plane in terms of x and y co-ordinates, and if it extended indefinitely then we could describe this plane as being indefinite or unbounded. No matter how far you travelled in any particular direction you would never reach an edge or boundary.

159
Q

Expanding space - expanding balloon analogy

A

Suppose you have two coordinates on the surface of a balloon. As the balloon gets bigger and bigger the radius gets bigger but the specific coordinates of a point on the surface don’t change. The distance between two points, though, would get bigger. Further, as the radius increase, so the rate of change of distance between two points – their recession speed – is proportional to their separation, just as in the Hubble Law.

You can see that whilst the quantity R isn’t one of the co-ordinates giving the position of a point on the balloon’s surface, it does play an important role in the discussion of distance. It is the radius of curvature of our 2-dimensional space, and it
is also a varying scale factor that changes as this 2-dimensional universe expands.

160
Q

Generalising the expanding space to 3 dimensions

A

Generalising to 3 dimensions we have to picture our 3-dimensional universe as being embedded in a space with 4 or more dimensions.
Our real 3-dimensional space is not Cartesian – to describe its characteristics in any small region requires at least one additional parameter – the curvature of space.
This is analogous to the radius of our balloon. In a sense the scale factor, which we’ll still call R, describes the size of the universe, just as the radius of the sphere described the size of our 2 dimensional spherical universe.

161
Q

Any length that is measured in intergalactic space is proportional to R, so…

A

the wavelength of light travelling to us from a distant galaxy increases along with every other dimension as the universe expands.

This is given by:
λo / λ = 𝑅o / R

The zero subscripts refer to the values of wavelength and scale factor today – just as H0 refers to the Hubble constant’s value today. The R and λ without subscripts are the values that these quantities take at any time in the past, present or future.

162
Q

Cosmological redshift

A

This increase of wavelength with time as the scale factor increases in our expanding universe is called the cosmological redshift. The farther away the object is, the longer its light takes to get to us, and the greater the change in R and λ.

163
Q

Critical density - Whether the universe continues to expand indefinitely depends on the average
density of the matter in the universe. If matter is relatively dense …

A

then there is a lot of gravitational attraction to slow and eventually stop the expansion and make the
universe contract again. If not, the expansion should continue forever. There is therefore a critical density, ρ𝑐, which is needed to just stop the expansion continuing indefinitely

164
Q

The total energy when a projectile of mass m and speed v is at a distance r from the centre of the Earth, which has mass mE is given by …

A

Total energy = Kinematic energy + Potential energy
𝐸 = 𝐾 + 𝑈
𝐸 = 1/2𝑚𝑣^2 − 𝐺𝑚𝑚𝐸 / 𝑟

where G is the gravitational constant of the universe.

165
Q

Spherically symmetric implies

A

same gravitational potential (for two objects if M and m were both points)

166
Q

For total energy of our galaxy, the different conditions of E imply that:

A

-If E is positive, then our galaxy has enough energy to escape from the gravitational attraction of the mass M inside the sphere. The universe should expand forever.
-If E is negative, then our galaxy cannot escape and the universe should eventually collapse.

We can find the critical density (pc) at the point where E = 0.

167
Q

What are two main ways of working out the density of matter in the universe

A

1 - Count the number of galaxies in a patch of sky, then use the average mass of a star and the average number of stars in an average galaxy. This gives you
an estimate of the average density of the matter we can “see” – luminous matter aka matter that emits electromagnetic radiation

2 - Study the motion of galaxies within galaxy clusters (by monitoring redshift) to get an idea of their speeds. These speeds are related to the gravitational
force exerted on each galaxy by the other members of the cluster, which in turn is depend on the cluster’s mass. And from this we get the average density of all the matter in the cluster, whether it emits in the electromagnetic spectrum or not.

168
Q

where does the idea of dark matter come from

A

Studies of the type (2) show that the average density of all matter in the universe is around 26 % of the critical density. However, the average density of luminous matter is only 4 %. In other words, the majority of matter in the universe does not emit
electromagnetic radiation – we call this dark matter.

169
Q

What is important about dark matter

A

For Dark matter it appears that its average density is less than the critical level needed to prevent continuing expansion. Gravitational attraction will slow that expansion, but never enough to stop it.

170
Q

The expansion of the universe is in fact speeding up not slowing down. We know this because

A

If the expansion of the universe was slowing, then the expansion must have been happening faster in this distant past. We would expect very distant galaxies to have greater redshifts than predicted by the Hubble Law. However, measurements made show that the redshifts of the most distance galaxies are actually smaller than the Hubble Law prediction. This implies that the expansion of the universe is in fact speeding up , not slowing down.

171
Q

How can the universe be expanding if gravity should be acting to slow it down?

A

The current theory states that space is suffused with a kind of energy that has no gravitational effect and emits no electromagnetic radiation. Rather it acts as a kind of “anti-gravity” producing a universal repulsion. This invisible, immaterial energy is called dark energy. We have no idea what this is.

172
Q

The energy density of this dark energy is …

A

the amount of energy per cubic metre
74% of the critical density multiplied by c^2

173
Q

The average density of all matter has been found to be…

A

26% of the critical density

From E = mc^2, the average density of matter in the universe is therefore 0.26ρ𝑐𝑐^2

174
Q

The energy density of dark energy is nearly 3 times greater than that of matter this means that…

A

The expansion of the universe will continue to accelerate, the expansion will never stop and the universe will never contract.

175
Q

How do particles become progressively uncoupled?

A

Over time, our universe has become larger, less dense and colder. The average particle energy has therefore decreased, and as this happened so the basic interactions of those particles became progressively uncoupled.

176
Q

It is assumed that at sufficiently high energies and short distances, gravitation unites with the others. The distance at which this happens is called…

A

the Planck length, lp

(in formula sheet)

177
Q

The plank time is

A

the time required for light to travel planks length, found by tp = lp / c

178
Q

If we go back in time, 10^-43 is as far back as we can go because

A

before then all interactions were united, and we have no theories to describe how the universe behaved then. Meaning that, earlier than the Plank time, when the universe was smaller than the Plank length.