Pure - Differentiation Flashcards
What is the chain rule?
y = f(x), let f(x) = u
dy/dx = dy/du x du/dx
What is the product rule?
y = f(x) g(x)
dy/dx = f(x) g’(x) + g(x) f’(x)
What is the quotient rule?
y = f(x) / g(x)
dy/dx = [f’(x) g(x) - f(x) g’(x)] / [g(x)]²
Find dy/dx of y = sin(f(x))
y = sin(f(x))
dy/dx = f’(x) cos(f(x))
Find dy/dx of y = cos(f(x))
y = cos(f(x))
dy/dx = - f’(x) sin(f(x))
Find dy/dx of y = Ln(x)
y = Ln(x)
dy/dx = 1/x
Find dy/dx of y = Ln(f(x))
y = Ln(f(x))
dy/dx = f’(x) / f(x)
Find dy/dx of y = aᵏˣ
y = aᵏˣ
dy/dx = kaᵏˣLn(a)
Find dy/dx of y = [f(x)]ⁿ
y = [f(x)]ⁿ
dy/dx = n [f(x)]ⁿ⁻¹ f’(x)
Find dy/dx of y = eᶠ⁽ˣ⁾
y = eᶠ⁽ˣ⁾
dy/dx = f’(x) eᶠ⁽ˣ⁾
Find dy/dx of y = tan(f(x))
y = tan(f(x))
dy/dx = f’(x) sec²(f(x))
Find dy/dx of y = sec(f(x))
y = sec(f(x))
dy/dx = f’(x) sec(f(x)) tan (f(x))
Find dy/dx of y = cot(f(x))
y = cot(f(x))
dy/dx = - f’(x) cosec²(f(x))
Find dy/dx of y = cosec(f(x))
y = cosec(f(x))
dy/dx = - f’(x) cosec(f(x)) cot(f(x))