Pure 4: Roots Of Polynomials Flashcards
Roots of Quadratics (2)
α + β = -b/a
αβ = c/a
Roots of Cubics (3)
α + β + λ = -b/a
αβ + βλ + λα = c/a
αβλ = -d/a
Roots of Quartics (4)
α + β + λ + δ = Σα = -b/a
αβ + βλ + λα + αδ + βδ + λδ = Σαβ = c/a
αβλ + αβδ + βλδ + αλδ = Σαβλ = -d/a
αβλδ = e/a
Quadratic Reciprocals
1/α + 1/β = α+β / αβ
Cubic Reciprocals
1/α + 1/β + 1/λ = αβ+βλ+λα / αβλ
Quartic Reciprocals
1/α + 1/β + 1/λ + 1/δ = Σαβλ / αβλδ
Sums of Squares - Quadratics
α^2 + β^2 = (α+β)^2 - 2αβ
Sums of Squares - Cubics
α^2 + β^2 + λ^2 =(α+β+λ)^2 - 2(αβ+βλ+λα)
Sums of Squares - Quartics
α^2 + β^2 + λ^2 + δ^2 =(Σα)^2 - 2(Σαβ)
Sums of Cubes - Quadratics
α^3 + β^3 = (α+β)^3 - 3αβ(α+β)
Sums of Cubes - Cubics
α^3 + β^3 + λ^3 = (Σα)^3 - 3(Σα)(Σαβ) + 3αβλ