Propositional Logic Flashcards

1
Q

p→q这句话的contraposition, converse, inverse之间的区别

A

contraposition:是相同逻辑表达, 换一种表达方式
因此¬q→¬p
converse,是前后对换
q→p
inverse是否定化原句
¬p→¬q

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

∨和⊕的区别是?

A

如果只用∧ ∨ ¬表达⊕, 如何表达(联系⊕的逻辑本意)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

⇔ ∨ ∧ ⊕ → ¬的有限次序是什么

A

¬ ∧ ∨ ⊕ → ⇔

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

建立truth table时, 如果有3个variable, 有几种不重复组合; 4个variable; n个variable, 有几个?

A

2^3=8; 2^4=16; 2^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

看到..”if and only if”立马想起哪个logic operator?
为什么

A


拿下雨拿伞举例
“我只有下雨天才会带门带伞”
这限制了带伞的前提条件 除了下雨外, 没有其它的.
那么只要从结果带伞就可以推断出, 只有一个前提条件, 就是下雨天出现了, 那么从结果q可以推断出条件p. q→p
相当于结果q等价于条件p的出现

同时, 下雨天, 这个条件p 可以推断出, 所以要带伞, 这个结论q.
也就是只要p条件出现, 就有q这个结果.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

tautology
contradiction
contingency

A

用数字1/0说明他们所代表的意义

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

There is exactly one…怎么表达

A

∃x(H(x) ∧ ∀y(H(y) → (x = y)))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

At least two people are happy.

A

∃x∃y(H(x)∧H(y)) ∧ (x≠y))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly