Proofs Flashcards
1
Q
ab and a+b unique real number
A
Axiom of closure
2
Q
a+b=b+a ab=ba
A
Commutative Axiom
3
Q
(a+b)+c=a+(b+c) (ab)c=a(bc)
A
Associative Axiom
4
Q
Axioms of Equality
A
Reflective Axiom
Symmetric Axiom
Transitive Axiom
5
Q
a=a
A
Reflective Axiom
6
Q
If a=b, the b=a
A
Symmetric Axiom
7
Q
If a=b and b=c then a=c
A
Transitive Axiom
8
Q
a(b+c)=ab+ac
A
Distributive Axiom
9
Q
-(-a)=a
A
Cancellation Property of Opposites
10
Q
a+0=a 0+a=a
A
Identity Axiom for Addition
11
Q
a+(-a)=0 -a+a=0
A
Axiom of Additive Inverses
12
Q
-(a+b)=-a+(-b)
A
Property of the Opposite of a Sum
13
Q
a-b=a+(-b)
A
Definition of Subtraction
14
Q
a•1=a 1•a=a
A
Identity Axiom for Multiplication
15
Q
a•0=0 0•a=0
A
Multiplicative Property of Zero