Problems Flashcards
Key point to find potential of shell from Gaus
Set integral limits r to infinity
2 key points to find charge from densities
- Integral is multiplied by charge density - rho, sigma etc
- Do not forget Jacobian
How to find charge for solid e.g. sphere of radius R
- Charge density, ρ = total charge/total volume
= q/ 4 π/3 R^3
Or Q = ρ V
- Qenc = Q * (Volume inside Gaussian/volume inside sphere)
What must you always remember when stating the field
Unit vector
Energy formula for particles
- Total energy = K.E. A + K.E.B + Coulomb
How to find simultaneous equations to solve for energy problems
- conservation of energy
- Conservation of momentum
Radius used for dA in Gauss Law
Gaussian surface - usually r
Radius used for charge
Small r inside shape
Big r outside shape
Formula for energy stored in assembling spherical shell
W = 1/2 * εo ∫ σ dA
Surface area of cone
πrS + πr^2
***S = slant height, not perpendicular height
Steps to find potential difference of unusual shape
- Find potentials separately
- State potential equation; V = k ∫q/curly r
- Use diagram to define curly r, r and r’
- Find curly r in terms of unit vectors - consider change in coordinates
- Find magnitude of curly r
6.Define da in terms of coordinates - Use diagram to simply any terms
Using curly R method to find potential or field at a distance from SOLID
- Take a slice and reduce to area integral
How to find monopole moment
Sum of magnitude of charges
How to find dipole moment
∑QiRi
* WITH UNIT VECTORS
Potential at large r from pole moments
Potential = ∑pole = Vmonopole + Vdipole etc (kQ/r)
- Use Q = Qtotal for monopole and Q = p.r for dipole
- May need theta for dot product for latter e.g. 3qa Rhat.Z hat -> 3qa cos θ
Force formula
QE
Work formula
= qV
Pattern of potential inside a conductor
Uniform
Separation vector
From source to observer
Calculate potential across changing E fields
= -kQ/ r
BUT different integral limits according to differing E fields
Meaning a grounding wire making a shell’s potential = 0
Enclosed E field =0
Capacitance from Electric field
- Gauss to find E field
- Inegrate to find potential
- C = Q/V
What to remember for bound surface and volume charges
- Need conversion to spherical coordinates (or others if appropriate)