Precalc Flashcards
1 + cot(x)^2
csc(x)^2
sin(30)
1/2
An = A1 + (n - 1)d
Arithmetic
cos(45)
sqrt(2)/2
sin(a +|- b)
sin(a)cos(b) +|- cos(a)sin(b)
Arithmetic sequence
An = A1 + (n - 1)d
tan^-1(y/x)
t
csc(x)^2 - cot(x)^2
1
sin(x)^2 + cos(x)^2
1
Parabola
(x - h)^2 = 4p(y -k)
y - k)^2 = 4p(x - h
[(x - h)^2 / a^2] - [(y - k)^2 / b^2]
Hyperbola
w/ direction up and down (x - y)
Hyperbola
[(x - h)^2 / a^2] - [(y - k)^2 / b^2]
[(y - k)^2 / a^2] - [(x - h)^2 / b^2]
(y - k)^2 = 4p(x - h)
Parabola
w/ direction left and right
Focus of ellipse
h +|- c , k
Where h,k is the center
Where c = sqrt(a^2 - b^2)
c = sqrt(a^2 + b^2)
Distance from center to focus for hyperbola
Polar coordinates
r , theta[t]
r = sqrt(x^2 + y^2)
t = tan^-1(y/x)
sin(x/2)
+|- sqrt[(1 - cos(x)) / 2]
cos(a)cos(b) -|+ sin(a)sin(b)
cos(a +|- b)
r sin(t)
y
[(x - h)^2 / a^2] + [(y - k)^2 / b^2]
ellipse
Focus of parabola
h , k + p
h + p , k
Where h,k is the vertex
nOr = n! / (r! (n - r)!)
Combinations
Law of sine
A/sin(a) = B/sin(b) = C/sin(c)
sin(45)
sqrt(2)/2
sec(x)^2 - tan(x)^2
1
sec(x)^2 - 1
tan(x)^2
Ellipse
[(x - h)^2 / a^2] + [(y - k)^2 / b^2]
[(y - k)^2 / a^2] - [(x - h)^2 / b^2]
Hyperbola
w/ direction left and right (y - x)
cos(2a)
cos(a)^2 - sin(a)^2
Focal width of parabola
4p
cos(a)^2 - sin(a)^2
cos(2a)
tan(2a)
(2tan(a)) / (1 - tan(a)^2)