practice Flashcards
- Data Stream as Disjoint Intervals
Given a data stream input of non-negative integers a1, a2, …, an, summarize the numbers seen so far as a list of disjoint intervals.
Implement the SummaryRanges class:
SummaryRanges() Initializes the object with an empty stream. void addNum(int val) Adds the integer val to the stream. int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [starti, endi].
Example 1:
Input
[“SummaryRanges”, “addNum”, “getIntervals”, “addNum”, “getIntervals”, “addNum”, “getIntervals”, “addNum”, “getIntervals”, “addNum”, “getIntervals”]
[[], [1], [], [3], [], [7], [], [2], [], [6], []]
Output
[null, null, [[1, 1]], null, [[1, 1], [3, 3]], null, [[1, 1], [3, 3], [7, 7]], null, [[1, 3], [7, 7]], null, [[1, 3], [6, 7]]]
Explanation
SummaryRanges summaryRanges = new SummaryRanges();
summaryRanges.addNum(1); // arr = [1]
summaryRanges.getIntervals(); // return [[1, 1]]
summaryRanges.addNum(3); // arr = [1, 3]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]
summaryRanges.addNum(7); // arr = [1, 3, 7]
summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]
summaryRanges.addNum(2); // arr = [1, 2, 3, 7]
summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]
summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]
summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]
Black-Red- Tree
https://www.sophiachenbeauty.com/archives/352%20Data%20Stream%20as%20Disjoint%20Intervals
- Maximum Subarray
Share
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
DP
https://www.sophiachenbeauty.com/archives/53%20Maximum%20Subarray
- Maximum Size Subarray Sum Equals k
Medium
1224
37
Add to List
Share
Given an integer array nums and an integer k, return the maximum length of a subarray that sums to k. If there isn’t one, return 0 instead.
Example 1:
Input: nums = [1,-1,5,-2,3], k = 3
Output: 4
Explanation: The subarray [1, -1, 5, -2] sums to 3 and is the longest.
Example 2:
Input: nums = [-2,-1,2,1], k = 1
Output: 2
Explanation: The subarray [-1, 2] sums to 1 and is the longest.
HashMap
- Minimum Size Subarray Sum
Medium
3756
143
Add to List
Share
Given an array of positive integers nums and a positive integer target, return the minimal length of a contiguous subarray [numsl, numsl+1, …, numsr-1, numsr] of which the sum is greater than or equal to target. If there is no such subarray, return 0 instead.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4]
Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0
two pointers
- Product of Array Except Self
Medium
Share
Given an integer array nums, return an array answer such that answer[i] is equal to the product of all the elements of nums except nums[i].
The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n) time and without using the division operation.
Example 1:
Input: nums = [1,2,3,4]
Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3]
Output: [0,0,9,0,0]
left right besides its current position.
two direction.
- Maximum Product Subarray
Medium
6857
225
Add to List
Share
Given an integer array nums, find a contiguous non-empty subarray within the array that has the largest product, and return the product.
It is guaranteed that the answer will fit in a 32-bit integer.
A subarray is a contiguous subsequence of the array.
Example 1:
Input: nums = [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: nums = [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
DP
- Trapping Rain Water
Hard
Share
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining.
Example 1:
Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
Example 2:
Input: height = [4,2,0,3,2,5]
Output: 9
two pointer
- Rotate Array
Medium
4615
936
Add to List
Share
Given an array, rotate the array to the right by k steps, where k is non-negative.
Example 1:
Input: nums = [1,2,3,4,5,6,7], k = 3
Output: [5,6,7,1,2,3,4]
Explanation:
rotate 1 steps to the right: [7,1,2,3,4,5,6]
rotate 2 steps to the right: [6,7,1,2,3,4,5]
rotate 3 steps to the right: [5,6,7,1,2,3,4]
Example 2:
Input: nums = [-1,-100,3,99], k = 2
Output: [3,99,-1,-100]
Two method
- Explanation:
rotate 1 steps to the right: [99,-1,-100,3]
rotate 2 steps to the right: [3,99,-1,-100]
Original List : 1 2 3 4 5 6 7
After reversing all numbers : 7 6 5 4 3 2 1
After reversing first k numbers : 5 6 7 4 3 2 1
After revering last n-k numbers : 5 6 7 1 2 3 4 –> Result - do while
- Wiggle Sort
Given an integer array nums, reorder it such that nums[0] <= nums[1] >= nums[2] <= nums[3]….
You may assume the input array always has a valid answer.
Example 1:
Input: nums = [3,5,2,1,6,4]
Output: [3,5,1,6,2,4]
Explanation: [1,6,2,5,3,4] is also accepted.
Example 2:
Input: nums = [6,6,5,6,3,8]
Output: [6,6,5,6,3,8]
One best method, not sorting.
Just need to swap the elements, but has logical order inside.
- First Missing Positive
1012
Add to List
Share
Given an unsorted integer array nums, find the smallest missing positive integer.
You must implement an algorithm that runs in O(n) time and uses constant extra space.
Example 1:
Input: nums = [1,2,0]
Output: 3
Example 2:
Input: nums = [3,4,-1,1]
Output: 2
Example 3:
Input: nums = [7,8,9,11,12]
Output: 1
swap method
like swap elements by its pos
- Contains Duplicate III
Medium
1629
1700
Add to List
Share
Given an integer array nums and two integers k and t, return true if there are two distinct indices i and j in the array such that abs(nums[i] - nums[j]) <= t and abs(i - j) <= k.
Example 1:
Input: nums = [1,2,3,1], k = 3, t = 0
Output: true
Example 2:
Input: nums = [1,0,1,1], k = 1, t = 2
Output: true
Example 3:
Input: nums = [1,5,9,1,5,9], k = 2, t = 3
Output: false
slicing windows
using treeset and only use ceiling.
- Majority Element II
Medium
2760
224
Add to List
Share
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times.
Follow-up: Could you solve the problem in linear time and in O(1) space?
Example 1:
Input: nums = [3,2,3]
Output: [3]
Example 2:
Input: nums = [1]
Output: [1]
Example 3:
Input: nums = [1,2]
Output: [1,2]
见面遇到队伍原则
- Range Addition
Medium
679
26
Add to List
Share
You are given an integer length and an array updates where updates[i] = [startIdxi, endIdxi, inci].
You have an array arr of length length with all zeros, and you have some operation to apply on arr. In the ith operation, you should increment all the elements arr[startIdxi], arr[startIdxi + 1], …, arr[endIdxi] by inci.
Return arr after applying all the updates.
Example 1:
record end points and use reduction.
final calculate at end
- Best Meeting Point
Hard
623
49
Add to List
Share
Given an m x n binary grid grid where each 1 marks the home of one friend, return the minimal total travel distance.
The total travel distance is the sum of the distances between the houses of the friends and the meeting point.
The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
Example 1:
Input: grid = [[1,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0]]
Output: 6
Explanation: Given three friends living at (0,0), (0,4), and (2,2).
The point (0,2) is an ideal meeting point, as the total travel distance of 2 + 2 + 2 = 6 is minimal.
So return 6.
Example 2:
Input: grid = [[1,1]]
Output: 1
not using sort
using insert by order
- Longest Consecutive Sequence
Medium
5196
256
Add to List
Share
Given an unsorted array of integers nums, return the length of the longest consecutive elements sequence.
You must write an algorithm that runs in O(n) time.
Example 1:
Input: nums = [100,4,200,1,3,2]
Output: 4
Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]. Therefore its length is 4.
Example 2:
Input: nums = [0,3,7,2,5,8,4,6,0,1]
Output: 9
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
two methods
both need to remember