Pharmacodynamics Flashcards
- Define Drug.
Any substance that when administered to a living organism, produces a biological effect – it does not add function but rather stimulates or inhibits normal cellular functions to alter the basic processes in body cells
- Define pharmacology.
Study of how the function of living systems is affected by chemical agents
- Define pharmacokinetics and pharmacodynamics.
Pharmacokinetics → study of absorption, distribution, metabolism and excretion of drugs (what we do to the drug)
Pharmacodynamics → study of effects of drugs and their mechanisms of action (what the drug does to us)
- Define toxicology.
Study of the adverse side effects of drugs
- What are the different major types of drug receptors?
- ion channels
- G protein-linked receptors
- Enzyme linked receptors
- Intracellular receptors
- Extracellular receptors
- transporters
- What are the two types of ion channels?
- voltage-gated – conductance (opening and closing) of channels is regulated by changes in the membrane potential
- ligand-gated – conductance is controlled by ligand binding
- How do local anesthetics act as ion channels?
Local anesthetics block the voltage-gated sodium channels in neurons that transmit pain information from the periphery to the CNS therefore preventing the action potential propagation and pain perception
- How do benzodiazepines act as ion channels?
Benzodiazepines bind to the GABAa receptor in neuronal membranes in the CNS. GABAa channels usually function as a chloride ion channel which is activated by the GABA neurotransmitter. When benzodiazepines are added to the equation, it enhances the ability of GABA to open the chloride channel for longer causing hyperpolarization and more inhibition.
- What are G protein linked receptors?
A majority of prescription drugs function with G protein linked receptors. Signaling through these mechanisms uses 3 membrane-bound components: cell surface receptor, G protein and an effector (enzyme or ion channel). The G protein has 3 polypeptide subunits: alpha, beta, gamma. Once the drug binds the receptor, the alpha subunit is hydrolyzed from GDP → GTP, is released and activates the effector (ex. adenylate cyclase).
Ex. Albuterol (B2 agonist) for asthma
Propranolol (B antagonist) for HTN
Bethanechol (muscarinic agonist) for atonic bladder
Ipratropium (muscarinic antagonist) for asthma
- What are examples of G protein effects?
- ion channels
- membrane-bound enzymes that interact with the G proteins with enzymes leading to the production of second messengers (ex. adenylyl cyclase catalyzes formation of cAMP and phospholipase C catalyzes the formation of IP3 and DAG)
- What are the different G protein signalling pathways?
- Gs increases adenylyl cyclase
- Gi decreases adenylyl cyclase and opens potassium channels
- Gq increases phospholipase C
- What are different examples of cAMP mediated hormonal responses?
B-adrenoreceptor activation causes breakdown of glycogen in liver (with glucagon receptors as well), TG in adipose tissue, increased HR and contraction force and relaxation of smooth muscle.
- What is the pathway of IP3 once activated?
IP3 = inositol-1,4,5-triphosphate
PLC → PIP2 moves to DAG and IP3
IP3 activates Ca2+ release from ER
Ca2+ activates several enzymes leading to smooth muscle contraction, increased force of contraction of cardiac muscle, secretion from exocrine glands, neurotransmitter release from neurons, hormone release.
- What are the different enzyme linked receptors?
- ligand-regulated transmembrane enzymes
- cytokine receptors – mediate actions of peptide ligands such as growth hormone, prolactin, EPO, and interferons they have no intrinsic enzymatic activity and bind to the intracellular tyrosine kinase in the JAK family
- What are ligand-regulated transmembrane enzymes?
These receptors are polypeptides consisting of an extracellular hormone-binding domain and a cytoplasmic enzyme domain. The enzyme domain can be a tyrosine kinase (largest group), serine/threonine kinase or guanylyl cyclase.