Pathophys Flashcards
Function of the pericardium
- superficial fibrous outer layer: it protects, anchors, and prevents overfilling
- deep 2 layered serous pericardium: parietal and visceral (epicardium) layers that are separated by fluid that decreases friction
Layers of the heart wall?
- epicardium:visceral layer of serous pericardium
- myocardium: spiral bundles of cardiac muscle cells, and fibrous skeleton of the heart that anchors muscle fibers and supports vessels and valves, limits spread of action potentials to specific paths
- endocardium: continuous with endothelial lining of blood vessels
Vessels entering the right atrium?
- SVC and IVC
- coronary sinus
Vessels entering left atrium?
- right and left pulmonary veins
Difference in pressures: systemic and pulmonary circuit
- equal volumes of blood are pumped to the pulmonary and systemic circuits
- pulm circuit is short, low pressure circulation
- systemic circuit blood encounters much resistance in long pathways, high pressure
What is the shortest circulation circuit in the body?
- coronary circulation
What are the important coronary arteries?
- right and left coronary, marginal, circumflex and LAD
What are the branches off of the right coronary artery? Left?
- R: right marginal and posterior interventricular artery
- L: anterior descending and circumflex
During what period of the cardiac cycle do the coronary arteries receive perfusion?
- diastole
What is angina pectoris?
- thoracic pain caused by a fleeting deficiency in blood delivery to the myocardium so cells become weakened
What is an MI?
- prolonged coronary blockage
- areas of cell death are repaired with noncontractile scar tissue
Different heart valves? function?
- ensure unidirectional blood flow through the heart
- AV valves::
prevent backflow into atria when ventricles contract, tricuspid and mitral - chordae tendineae anchor AV valve cusps to papillary muscle
- semilunar valves: prevent backflow into the ventricles when ventricles relax, aortic and pulmonary semilunar valves
Why are there no valves going into R and L atria?
- no valves guarding Vena cavas and pulm veins because pressure is so low
Circulation of blood through the heart?
- blood returning to heart fills atria putting pressure against AV valves which are then forced open
- as ventricles fill, AV valves flaps hang limply into ventricles
- atria contract, forcing additional blood into ventricles
- ventricles contract forcing blood against atrioventricular valves cusps and the valves close, the papillary muscles contract and chordae tendineae tighten, preventing valve flaps from everting into atria
- As ventricles contract and intraventricular pressure rises, blood is pushed up against semilunar valves forcing them open
- as ventricles relax and intraventricular pressure falls, blood flows back from arteries filling the cusps of the valves and forcing them to close
Why is there a fibrous insulator between the atrium and ventricle?
- keeps everything in order through specific pathways, keep ventricles from depolarizing at the same time
Describe cardiac muscle and contraction.
- has actin and myosin filaments
- has low resistance intercalated disks
- depolarization of the heart is rhythmic and spontaneous
- about 1% of cardiac cells have automaticity (self-excitable)
- gap junctions ensure the heart contracts as a unit
- long absolute refractory period (250 ms)
similarities b/t cardiac and skeletal muscle?
- both are triggered by action potentials that sweep across cell membranes
- 1% of cardiac fibers are auto rhythmic
- bulf of heart msucle however are composed of contractile muscle fibers responsible for heart’s pumping action
- in these cells, the sequence of event leading to contraction is similar to that in skeletal muscle fibers
Describe systole and diastole?
- systole: ventricular muscle stimulated by action potential and contracting
- diastole: ventricular muscle reestablishing Na/K/Ca gradient and relaxing
What is the intrinsic cardiac conduction system?
- a network of noncontractile (autorhythmic) cells that initiate and distribute impulses to coordinate the depolarization and contraction of the heart
Describe the electrical pathway of the heartbeat?
begins at SA node (pacemaker of heart) - goes down internodal pathway to AV node and impulse is delayed here to allow atria to contract before ventricles and AV bundle then takes impulse into ventricles through bundle of his and then down the left and right bundles of purkinje fibers that take impulses to rest of ventricles
Describe the autorhythmic cells?
- have unstable resting potentials (pacemaker potentials or prepotentials) due to open slow Na+ channels and closing of K+ channels
- at threshold Ca2+ channels open and explosive Ca2+ influx produces the rising phase of the action potential and depolarization occurs
- repolarization results from the inactivation of Ca2+ channels and opening of voltage gated K+ channels, this allows K+ efflux which brings the membrane potential back to its most negative voltage
Describe the sinus node and it’s action potential?
- specialized cardiac muscle connected to the atrial muscle
- acts as a pacemaker because membrane leaks Na+ and membrane potential is -55 to -60 mV and when the membrane potential reaches -40 mV slow Ca2+ channels open causing action potential
- after 100-150 sec Ca++ channels close an K+ channels open more thus returning membrane potential to -55 mV
Electrical pathway?
- SA node (pacemaker): generates impulses about 75 times/minute (sinus rhythm), depolarizes faster than any other part of myocardium
- AV node: smaller diameter fibers, fewer gap junctions, delays impulses approx 0.1 sec
depolarizes 50 times/min in absence of SA node input, delays impulse from atria into ventricles - AV bundle (bundle of his): only electrical connection between the atria and ventricles
- Right and left bundle branches: 2 pathways in the interventricular septum that carry the impulses toward the apex of the heart
- purkinje fibers: complete the pathway into the apex and ventricular walls, av bundle (bundle of his) and purkinje fibers depolarize only 30x per minute in absence of AV node input
What are the homeostatic imbalances that may result in if there are defects in the intrinsic conduction system?
- arrhythmias: irregular heart rhythms
- uncoordinated atrial and ventricular contractions
- fibrillation: rapid, irregular contractions, useless for pumping blood