Our Dynamic Universe Flashcards
Quantities
Scalar quantities: have magnitude only (e.g. speed, distance, frequency, energy)
Vector quantities: have both magnitude and direction (e.g. velocity, displacement, acceleration, force)
Terminal velocity
As the velocity of an object increases the size of the frictional forces acting on it also increases. This effect means as the falling object accelerates the unbalanced force on it decreases. Eventually the object falls at a velocity where the forces acting on it are balanced - this is the object’s terminal velocity.
Acceleration
Acceleration is the rate of change of velocity
Units: ms-2 (meters per second per second)
Law of conservation of energy
Energy cannot be created or destroyed, but can only be converted from one form into another
(e.g. Ek lost = Ep gained)
(in/) elastic collisions
In an elastic collision both momentum and total kinetic energy is conserved
(total Ek before = Ek after)
In an inelastic collision momentum is conserved, but total kinetic energy is not conserved
(total Ek before ≠ Ek after)
Law of conservation of momentum
The total momentum before a collision is equal to the total momentum after, provided there are no external forces acting on the object
total p before = total p after
m1u1 + m2u2 = m1v1 + m2v2
Newton’s laws of motion
First law:
when forces acting on an object are balanced the object remains at rest or continues to move at a constant speed in a straight line
Second law:
When forces acting on an object are unbalances the object accelerates (F=ma)
Third law:
For every action there is an equal and opposite reaction
Gravitation
The universal constant of gravitation (G) = 6.67x10^-11
Units: m^3 kg^-1 s^-2
Gravitation is the mutual force of attraction between objects. When an object with mass is placed in a gravitational field it experiences a force. Every object attracts every other object.
Weight
Weight is the downwards force due to gravity
W=mg, weight = mass x gravitational field strength
Weight acting on a slope:
- component of weight down a slope = mgsinθ
- component of weight at right angles to the slope = mgcosθ
Projectiles
A projectile is an object that is in free fall, i.e. the only force acting on it is gravity
A projectile follows a curves path, the motion of which can be split into:
- horizontal motion: is a constant velocity (s=vt)
- vertical motion: is a constant downwards acceleration (on earth a= 9.8ms-2) (v=u+at) (suvat)
- when at maximum height the vertical velocity = 0
Special relativity laws
- when two observer are moving at constant speeds relative to one another, they will observe the same laws of physics
- the speed of light (in a vacuum) is the same for all observers
- however, in order to agree on the speed of light being constant observers in different frames of reference have to disagree about their measurements of time and distance
Doppler effect
The doppler effect causes shifts in wavelengths as a source moves relative to an observer
As the source moves towards an observer the wavelength appears to be shorter and the frequency higher (the distance between the wavefronts becomes compressed)
As the source moves away from an observer, the wavelength appears to be longer and the frequency lower (the distance between the wavefronts become elongated)
fo = fs (v/ v +- vs)
+ when source is moving away, - when source is moving towards
Length contraction
Length contraction is the apparent decrease in length (in the direction of travel) of an object moving relative to an observer
l’ = l √ 1 - (v/c)^2
l' = length measured by an observer, which the object is moving relative to (in a different frame of reference) l = length measured in same frame of reference as the moving object
Time dilation
Time dilation is the apparent increase in time of events on an object moving relative to an observer
t’ = t/ √ 1 - (v/c)^2
t' = time measured by an observer which the object is moving relative to (in a different frame of reference) t = time measured in the same frame of reference as the moving object
Redshift
Redshift (z) is when light emitted from objects moving away from an observer appears shifted to longer wavelengths (closer to the red end of the spectrum).
Blueshift/ negative redshift is when light emitted from objects moving towards an observer appears shifted to shorter wavelengths (closer to the blue end of the spectrum)