Orgo II Exam 1 Reactions Flashcards

1
Q

Alkane Chlorination/Bromonation:
1. Overall Reaction(s)
2. Mechanism
3. Notes

A

CH4 + X2 –∆–> CH3X + HX
- more substitued radicals are more stable and will be the major product
-if there is stereochem, it will be a racemic mixture bc the halogen can attack from above of below

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Radical Halogenation of Alkenes
1. Overall Reaction(s)
2. Notes

A
  1. alkene + HBr —-> monobromonated alkane
    - Markovnikov
  2. alkene + HBr –ROOR–> monobromonated alkane
    - Antimarkovnikov
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Radical Substitution of Benzylic Hydrogens
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Substituted Benzene + X2 –∆–> Bromo-benzylic substituted benzene
    ie: Ar-CH2CH3 + X2 –∆–> Ar-CH-X-CH3
    -must have at least 1 benzylic H
    - if resonance is not symmetrical, two products will form
  2. Substituted Benzene + NBS –∆,ROOR–> Bromo-benzylic substituted benzene
    - able to react in low conc of HBr and Br2
    - must have at least 1 benzylic H
    - if resonance is not symmetrical, two products will form
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Radical Substitution of Allylic Hydrogens
1. Overall Reaction(s)
2. Mechanism
3. Notes

A

Allylic + X2 –∆–> Bromo-allylic substituted
Allylic + NBS –∆,ROOR–>
-must have at least 1 benzylic H
- if resonance is not symmetrical, two products will form

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

General Electrophilic Addition Reaction Mechanism

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Benzene Halogenation
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Benzene + Br2 —(FeBr3)–> monobromonated benzene
    - No catalyst needed if the ring already has a strongly activating substituent
  2. Benzene + Cl2 —(FeCl3)–> monochloronated benzene
    - No catalyst needed if the ring already has a strongly activating substituent
  3. Benzene + I2 –(H2O2, H2SO4)–> monoiodonated benzene
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Benzene Nitration
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Benzene + HNO3 –(H2SO4)–> Benzene-NO2 + H2O
    - Can’t nitrate aniline
  2. Aniline + CH3C=OCl –(pyr)–> intermediate
    –(HNO3, H2SO4)–> nitrate added
    –1. HCl, H2O, ∆ 2. OH—> acyl substituent released. Nitrated aniline
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Friedel-Crafts Acylation
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Benzene + acyl halide
    –1. AlCl3 2. H2O–> carbonyl substituted benzene + HCl
  2. Benzene + acid anhydride
    –1. AlCl3 2. H2O–> carbonyl substituted benzene + carboxylic acid
  • FC reactions don’t occur when there is already a meta-directing substituent on the ring
  • Aniline doesn’t undergo Friedel-Crafts reaction
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Benzene Sulfonation and Desulfonation
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Sulfonation:
    Benzene + H2SO4 <–∆–> SO3H substituted (sulfonated) benzene + H2O
  2. Desulfonation
    Sulfonated Benzene + Dilute H3O+ <–> Benzene + SO3H+
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Friedel-Crafts Alkylation
1. Overall Reaction(s)
2. Mechanism
3. Notes

A

Benzene + RCl –AlCl3–> alkyl substituted benzene + HCl

  • Major product is the one with the most stable C+ intermediate. Rearrangements with H-shifts and methyl-shifts will occur
    -FC reactions don’t occur when there is already a meta-directing substituent on the ring
  • Aniline doesn’t undergo Friedel-Crafts reaction
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Alkylation by Acylation-Reduction
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Friedel-Crafts
    Benzene + acyl halid –1. AlCl3 2.H2O–> carbonyl substituted benzene
    –H2, Pd/C–> Benzene-CH2-R
    -H2, Pd/C only reduces carbonyls adjacent to the ring
  2. Wolff-Kishner
    Carbonyl substituted benzene
    –H2NNH2, OH-, ∆–> Benzene-CH2-R
    - Works well in a basic environment
    -reduces all ketones
  3. Clemmensen
    Carbonyl substituted benzene
    –Zn(Hg), HCl, ∆–> Benzene-CH2-R
    - Works well in acidic environments

-Use then when you don’t want C+ rearrangements
-Carbonyl reduction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Substituent Oxidation
1. Overall Reaction(s)
2. Mechanism
3. Notes

A

Alkyl substituted benzene
–H2CrO4, ∆–> carboxylic acid substituted benzene

-Oxidizes all alkyl groups as long as they have at least 1 benzylic H

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Coupling Reactions
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Gilman Reagent
    Halogenated benzene + (R)2CuLi —> alkyl-substituted benzene + RCu + LiX
  2. Suzuki Coupling
    Halogenated benzene + R1-B-(OR)2
    –PdL2, NaOH–> alkyl-substituted benzene
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Substituent Reduction
1. Overall Reaction(s)
2. Mechanism
3. Notes

A
  1. Alkene substituted benzene + H2
    –Pd/C–> Alkyl substituted benzene
  2. Cyano sustituted benzene + H2
    –Raney Ni–> Benzene-CH2-NH2
  3. Nitro sustituted benzene + H2
    –Pd/C–> aniline
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Substituent Reactivity
1. Chart
2. Indicate O/P or Meta
3. Major product

A

Strongly Activating: NH2, NHR, NR2, OH, OR,
Moderately Activating: NHC=O-R (carbonyl), OC=O-R (carbonyl),
Weakly Activating: R, Ph, CH=CHR
N/A: H (regular Benzene)
Weakly Deactivating: F, Cl, Br, I
Moderately Deactivating: HC=O,RC=O, ROC=O, HOC=O, ClC=O
Strongly Deactivating: C≡N, SO3H, +NH3, +NH2R, +NHR2, +NR3, NO2

O/P: Strongly activating-weakly deactivating
Meta: moderately deactivating-strongly deactivating

Para is major if sterics is an issue, otherwise ortho

EWG deactivate by drawing electrons out of the ring and creating positive or partial positive charges

EDG activate by donating electrons to the ring, destabiliting it, and creating negative or partial negative charges

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Arenediazonium Salt Reactions

A
  1. Salt generation
    aniline –NaNO2, HCl, 0°C–>
    Benzene-+N≡N + Cl-
  2. Sandmeyer Reactions
    a) Benzene-+N≡N –CuBr–> bromobenzene + N2↑
    b) Benzene-+N≡N –CuCl–> chlorobenzene + N2↑
    c) Benzene-+N≡N –CuC≡N–> cyanobenzene + N2↑

-Sandmeyer Reactions only make the para product

  1. Iodine
    Benzene-+N≡N –KI–> iodobenzene
  2. Schiemann Reaction
    Benzene-+N≡N –HBF4, ∆–> fluorobenzene + N2↑ + BF3
  3. Phenol Synthesis
    a) Benzene-+N≡N –H3O+, ∆–> phenol + N2↑ + HCl
    b) Benzene-+N≡N –Cu2O, Cu(NO3)2, H2O–> phenol + N2↑
  • b allows for higher yield than a
  1. Hydrogenation
    Benzene-+N≡N –H3PO2–> benzene + N2↑
17
Q

All ways to add an alkyl group and when to use each method

A
  1. Friedel-Crafts Alkylation
    a) Benzene + RCl –AlCl3–> monochlorobenzene (or Br)

-Can’t use with aniline
-Can use with strong deactivating subst.

  1. Alkylation by Acylation-Reduction
    Friedel-Crafts:
    Benzene + carbonyl halide
    –1.AlCl3 2.H2O–> carbonyl subst. benzene
    a) H2,Pd/C
    b) WK: H2NNH2, OH-, ∆
    c) Clem: Zn(Hg), HCl, ∆

-carbonyl reductions
-when don’t want C+ rearrangements
-H2, Pd/C only reduces carbonyls adjacent to the ring
-WK works best in basic environments
-Clemmensen works best in acidic environments

  1. Coupling
    a) Gilman:
    Bromobenzene + (R)2CuLi –> alkyl substituted benzene, RCu, LiBr
    b) Suzuki:
    Chlorobenzene + R-B-(OR)2
    –Pd(L)2, NaOH–> alkyl substituted benzene
18
Q

All the ways to add a halogen and when to use each method

A
  1. Alkane Chlorination/Bromonation
    a) Alkane + X2 –∆–> CH3X + HX
  2. Alkene Radicalization
    a) Alkene +HBr –> monobromonated alkane
    b) Alkene + HBr –ROOR–> monobromonated alkane (anti markov)
  3. Benzylic position halogenation
    a) Substituted Benzene + X2 –∆–> benzylic halogenation
    b) Substituted Benzene +
    NBS –∆,ROOR-> Benzylic substituted

-must have benzylic H for both

  1. Allylic position halogenation
    a) Allylic + X2 –∆–> allylic substituted
    b) Allylic + NBS –∆,ROOR–> allylic subst.

-must be allylic H for both

  1. Benzene Halogenation
    a) Benzene + Br –FeBr3–> monobromobenzene
    b) Benzene + Cl –FeCl3–> monochlorobenzene
    c) Benzene + I2 –H2SO4,H2O2–> monoiodobenzene

-no catalyst needed when benzene has strong activating subst.

  1. Arenediazonium Salts
    a) Sandmeyer:
    1- salt –CuBr–> bromobenzene + N2
    2- salt –CuCl–> chlorobenzene + N2
    b) Salt –KI–> iodobenzene
    c) Shiemann:
    Salt –HBF4,∆–> fluorobenzene + N2 + BF3
19
Q

Relative reactivities of carbonyls

A

acyl halide>acid anhydride>aldehyde>ketone>ester=carboxylic acid>amide>carboxylate ion

-consider sterics
-consider inductive effects

20
Q

Aldehyde Synthesis

A
  1. Oxidation of primary alcohols
    a) Jones: H2CrO4
    b) PCC, CH2Cl2
    c) NaOCl, CH2COOH, 0°C
    d) Swern: 1. DMSO, (COCl)2, -60°C 2. Triethylamine
  2. Ozonolysis:
    mono/di/tri-substituted alkene
    –1. O3 2.DMS–> Aldehyde(s) + Ketone
  3. Hodroboration- Oxidation of Terminal Alkyne:
    Terminal alkyne
    –1. 9BBN/THF 2. H2O2, OH-, H2O–> aldehyde
21
Q

Ketone Synthesis

A
  1. Oxidation of secondary alcohols:
    a) Jones: H2CrO4
    b) PCC, CH2Cl2
    c) NaOCl, CH2COOH, 0°C
    d) Swern: 1. DMSO, (COCl)2, -60°C 2. Triethylamine
  2. Ozonolysis:
    mono/di/tri-substituted alkene
    –1. O3 2.DMS–> Aldehyde(s) + Ketone(s)
  3. Hydration by Acid of Terminal Alkyne:
    Terminal alkyne
    –H2SO4, H2O, HgSO4–> ketone
  4. Hydration of Internal Alkyne:
    Internal alkyne –H2O, H2SO4–> Ketone

–2 products will form if internal alkyne is asymmetrical

  1. Friedel Crafts Acylation
    Benzene + acyl chloride
    –1. AlCl3 2. H2O–> Ketone
22
Q

How Aldehydes and Ketones React

A
  1. Nucleophilic Acyl Substitution (not aldehydes or Ketones. Acyl chlorides)
  2. Nucleophilic Addition
  3. Nucleophilic Addition-Elimination
23
Q

Preparation of organo-metals

A
  1. Organolithium
    Alkyl halide + 2Li –hexane–> Alkyl-Li + LiX
  2. Organomagnesium (Grignard)
    Alkyl bromide + Mg –diethyl ether–> alkyl-Mg-Br
  3. Organocuprate (Gilman)
    2 Alkyl-Li + CuI –THF–> (Alkyl)2CuLi + LiI
  • React with primary alkyl, methy, aryl, vinylic, or allylic. Replaces halogen with alkyl
24
Q

Grignard Reactions

A
  1. Protonation–> Alkane
  2. Ethylene Oxide –> R-CH2CH2O- –H2O–> RCH2CH2OH
  3. formaldehyde –> alkoxide ion –H3O+–> primary alc
  4. Aldehyde –> Alkoxide ion –H3O+–> secondary alc
  5. Ketone–> Alkoxide ion –H3O+–> tertiary alc

–Product is racemic mixture for stereochem

  1. CO2 –> Carbonyl ion –H3O+–> Carboxylic Acid

–adds 1 carbon to the Grignard reagent
– MgBr–>COOH

  1. Ester–> Ketone + Grignard –> alkoxide ion –H3O+–> teriary alcohol

– alc will have 2 of same alkyl groups bc 2 equiv Grignard

  1. Acyl Chloride or Acid anhydride
    –1. 2 Grignard 2. H3O+–> tertiary alc
25
Q

Organolithium Reactions

A
  1. Protonation–> Alkane
  2. Acyl chloride –1.R-Li 2. H3O+–> tertiary alc
26
Q

Gilman Reactions

A
  1. Alkyl halide + Gilman –> Alkane + alkyl-Cu + LiX
    2.Ethylene Oxide + Gilman –> R-CH2CH2O-
    –HCl–> CH3CH2R (adds 2 carbons from the epoxide)
  2. Acyl Chloride –> Ketone
  3. Ketone –> No reaction

–Gilman only reacts with acyl halides

27
Q

Reactions With Acetylide Ions

A
  1. Creation:
    Terminal alkyne–NaNH2–> RC≡C-
  2. Aldehyde/Ketone + RC≡C- –> intermediate ion –pyr–> nucleophilic addition
28
Q

Cyanide/Cyanohydrin Reactions

A
  1. Ketone + cyanide ion (XS) –HCl–> cyanohydrin (nucleophilic addition)
  2. In a base:
    cyanohydrin <–OH-, H2O–> intermediate ion
    –> ketone + cyanide ion
  3. In an acid:
    cyanohydrin –HCl, H2O, ∆–> alpha-hydroxycarboxylic acid

–cyanide ion–> COOH

  1. Cyanohydrin +H2 –Raney Ni–> primary amine
29
Q

Hydride Ion Reductions

A
  1. aldehyde –1.NaBH4 2.H3O+–> primary alcohol
  2. Ketone –1. NaBH4 2. H3O+–> secondary alcohol
  3. Acyl chloride –1. 2NaBH4 2.H3O+–> primary alcohol
  4. Acyl chloride –1.LTBA, -78°C 2.H2O–> aldehyde
  5. Ester –1. 2 LAH 2.H3O+–> primary alcohol
  6. Ester –1. DiBALH 2.H2O–> aldehyde

–esters won’t react with NaBH4 bc it isn’t strong enough

  1. Carboxylic Acid –1. LAH 2. H3O+–> primary alc
  2. Amide –1. 2LAH 2. H2O–> amine

– C=O –> CH2

30
Q

Reduction by NaBH4

A
  1. Ketone–1.NaBH4 2.H2O–> secondary alc
  2. Imine—>secondary amine
  3. Nitrile–> primary amine
  4. alkene or alkyne –> no rxn
31
Q

Reduction by H2

A
  1. Alkene + H2 –Pd/C–> alkane
  2. Alkyne + 2H2 –Pd/C–> alkane
  3. Imine + H2 –Pd/C–> Amine
  4. Nitrile + 2H2 –Raney Ni–> amine
  5. Aldehyde + H2 –Raney Ni–> primary alc
  6. Ketone + H2 –Raney Ni–> secondary alc
  7. Carboxylic acids, esters, and amides are not reduced with these

–Raney nickel is preferred for reducing aldehydes and ketones

32
Q

Reduction by Na/NH3(l)

A

Alkyne –> trans alkene

33
Q

Chemoselective Reactions

A
  1. H2 Pd/C only reduce alkenes, alkynes, and imines
  2. H2, Raney Ni reduces alkenes, alkynes, ketones, aldehydes, nitriles, and mines
    1. NaBH4 2. H2O only reduces aldehydes, ketones, imines, and nitriles
34
Q

Reactions with Primary Amines

A
  1. aldehyde + primary amine <–trace acid–> imine (aka Schiff Base) + H2O
  2. Ketone + primary amine <–trace acid–> imine + H2O

–imine formation replaces C=o with C=NR

35
Q

Forming Imine Derivatives

A
  1. Ketone + hydroxylamine (H2NOH)
    <–trace acid–> oxime (C=NOH) + water
  2. Ketone + hydrazine (H2NNH2)
    <–trace acid–> hydrazone (C=NNH2) + H2O