Number Bases Equations. Flashcards
Expanded decimal notation:
356.12 =
3x10^2 + 5x10^1 + 6x10^0 + 1x10^-1 + 2x10^-2
Expanded Binary Notation:
101.01 =
1x2^2 + 0x2^1 + 1x2^0 + 0x2^-1 + 1x2^-2
Decimal to Binary:
315 =
100111011
Decimal to Binary:
0.625 =
0.101
Decimal to Binary:
104.15625 =
1101000.00101
Decimal to Binary:
19.1 =
10011.0|0011| repeating bars.
Hexadecimal to Decimal:
E5B.F2 =
Ex16^2 + 5x16^1 + Bx16^0 + Fx16^-1 + 2x16^-2
14x16^2 + 5x16^1 + 11x16^0 + 15x16^-1 + 2x16^-2
Binary to Hexadecimal:
1100101100011101010 =
(Divide this up into groups of four starting on the right, and make a 4-bit binary table)
= 658EA
Binary to Hexadecimal:
101110101101.0001111
= BAD.1E
Hexadecimal to Binary:
3C.A29 =
(Like in Binary to Hexadecimal use the 4-bit binary table)
111100.101000101001
Find the One and Twos complement….?
1110
0001
0010 (Remember to carry the 1)
Find the One and Twos complement…?
11100
00011
00100
Addition of Binary Numbers…?
10011 + 11001
= 101100
Addition of Binary Numbers…?
10111 + 11011
= 110010
Addition of Binary Numbers…?
110111 + 1110
= 1010101
Subtraction of Binary Numbers…?
10110 - 1101
= (See PDFs)
Subtraction of Binary Numbers…?
100101 - 101110
= (See PDFs)
Subtraction of Binary Numbers…?
110 - 110101
= (See PDFs)
Modulo
(Look at tables in book from page 28 to page 29 still learning)
Write an algorithm to convert a decimal number between 0 and 1 to binary…?
first step Input the number 2 3 4 5 6
Draw a structure diagram for an algorithm for converting a decimal number between 0 and 1 to binary…?
(do it)
BEDMAS
12+3x4 =
24
BEDMAS
-2^4 / 8 * 5 =
10
BEDMAS
4 * (-3^2) / (2 * 5^-1) + 6 * (2 * 4^-2) =
90 3/4
BEDMAS
-3^2 =
9
SCIENTIFIC NOTATION:
93000000
9.3 x 10^3
SCIENTIFIC NOTATION:
14.689
1.4689 x 10^1
SCIENTIFIC NOTATION:
-0.003164
-3.164 x 10^-3
SCIENTIFIC NOTATION:
-6381.765
-6.381765 x 10^3
NORMALIZED EXPONENTIAL FORMAT:
93000000
0.93 x 10^8
NORMALIZED EXPONENTIAL FORMAT:
10111.011
.10111011 x 2^5
NORMALIZED EXPONENTIAL FORMAT:
0.000257
0.257 x 8^-3
NORMALIZED EXPONENTIAL FORMAT:
-6381.765
-0.6381765 x 10^4
Write the number 21.78 in its expanded notation…?
2x10^1 + 1x10^0 + 7x10^-1 + 8x10^-2
Write the number 3/8 in its expanded decimal notation…?
3/8 = 0.375 Answer = 3x10^-1 + 7x10^-2 + 5x10^-3
find the decimal equivalent of the binary numbers (a) 1011.011 and (b) 10.101
a) = 11.375
b) = 2.625
Convert the number 115 to binary form using the Algorithm method.
= 1110011
check by expanding.
Convert the number 149 to binary
= 10010101
Convert the number 509 to binary
= 111111101
Convert the number 0.828125 to binary
= 0.110101
Convert the number 12.3125 to binary
= 110.0101
Convert the number 0.3 to binary
= 0.0|1001|
Convert 4126 (Octal) to Decimal
= 2134
Convert 35.14 (Octal) to Decimal
= 29.1875
Convert 315 to Octal
= 473
Convert 0.34375 to Octal
= 0.26
Convert 142.15625 to Octal
= 216.12
Convert 1101110 to Octal (using a 3 bit , not a 4 bit like in hexadecimal)
=156.
Convert 3146 (Octal) to Binary
= 11001100010110
Convert B37 (Hexadecimal) to Decimal
= 2871
Convert 421 (Hexadecimal) to Decimal
= 1A5
Convert 110010111001011001101101 to Hexadecimal using the (4 bit table)
= CB966D
Convert 101101010000110110 to Hexadecimal
= 2D436
Convert A2E47 to binary
= 10100010111001000111
Convert 1D7 to binary
= 11010111
Binary 10 + 10 =
= 100
Binary 10 + 10 + 10 =
= 110
Binary 10 + 10 + 10 + 10 =
= 1000
Binary 101 + 100 =
= 1001
Binary 111 + 100 + 11 =
= 1110
Binary 101 - 10 =
= 11
Binary 111 - 11 =
= 100
Binary 100 - 11 =
= 1 (check by adding the answer and the number taken away together)
Binary 1000 - 1101 =
= 11
Find the Complement of (a) 1101 and (b) 10101
a) = 0011 b) = 1011
Binary 100011 - 1010 =
= 11001 (Read the PDF if you dont remember this)
Binary 10110 - 1101 =
= 1001
Find the One and twos complement of (a) 1011010, (b) 11011101 and (c) 111011111
a) = 100101 and 100110
b) = 100010 and 100011
c) = 100000 and 100001
Write 3482 in Expanded Decimal notation.
3x10^3 + 4x10^2 + 8x10^1 + 2x10^0
Write 44.2875 in expanded Decimal notation.
4x10^1 + 4x10^0 + 2x10^-1 + 8x10^-2 + 7x10^-3 + 5x10^-4
Write the binary number 110.1001 in expanded binary notation.
= 1x2^2 + 1x2^1 + 0x2^0 + 1x2^-1 + 0x2^-2 + 0x2^-3 + 1x2^-4
Convert 110.1001 to decimal
6.5625
Convert 173 to binary
10101101
Convert 0.734375 to binary
= 0.101111
Convert 0.85 to binary
= 0.11|0110|
Convert 425 to Binary
=110101001
Convert 28 to Binary
= 11100
Convert the octal number 4647132 to decimal
= 1265242
Convert 214.078125 to base 8
=326.05
Convert the number 100110100111001011010 to (a) octal and (b) hexadecimal representation.
a) = 4647132
b) = 134E5A
Convert the octal number 4613 to binary
= 100110001011
Convert the hexadecimal value 134E5A to decimal
= 1265242
Convert the hexadecimal number 8D2B to octal representation
Binary = 1000110100101011 Octal = 106453
Convert these rational numbers to a terminating or repeating decimal: (a) 5/2 (b) 1/12, (c) 3/11 and (d) 4/7
a) = 2.5
b) = 0.8|3|
c) = 0.|27|
d) = 0.|571428|
Convert these binary numbers to decimal representation: (a) 10111.01, (b) 111111.1 (c) 100000000
a) = 23.25
b) = 63.5
c) = 256
Convert these Decimal numbers to binary, looking for repeating patterns. (a) 3.6 (b) 0.55 (c) 4.4
a) = 11.|1001|
b) = 0.|10001| (Could be an error here)
c) = 100.|0110|
Convert each of these octal values to binary: (a)47 (b)526 (c) 3105
a) =100111
b) = 101010110
c) = 11001000101
Convert these binary values to octal: (a) 1001101 (b) 101.101 (c)100100101011
a) = 115
b) = 5.5
c) = 4453
Convert each hexadecimal number to binary; then convert the result to decimal.
(a) AB, (b) E4D, (c) 3F6
a) = 171
b) = 3661
c) = 1014
Perform the following operations in binary; check your result by converting everything to decimal: (a) 1010 + 0110 (b) 11010 + 1101, (c) 11010 - 1101
a) = 10000
b) = 100111
c) = 1101