norms Flashcards
vector norm:
a function ||.||:C^(n)->R satisfying:
||x||>=0 with equality iff x=0 (positive definiteness)
||αx||=|α|||x|| for all α in C and x in C^n (absolute homogeneity)
||x+y||<=||x||+||y|| for all x,y in C^n (triangle inequality)
manhattan norm:
aka taxi cab norm, ||x||1=|x1|+…+|xn|=(n)Σ(i=1)|xi|
euclidean length:
||x||2=(|x1|^(2)+…+|xn|^(2))^(1/2)=((n)Σ(i=1)|xi|^2)^(1/2)=(x*x)^(1/2)
maximum norm:
||x||∞=max|xi|
p-norm:
||x||p=(|x1|^(p)+…+|xn|^(p))^(1/p)=((n)Σ(i=1)|xi|^p)^(1/p), p>=1, the manhattan norm euclidean length and maximum norm are all special cases of this
hölder inequality:
|x*y|<=||x||p ||y||q, (1/p)+(1/q)=1
cauchy-schwarz inequality:
|x*y|<=||x||2 ||y||2, special case of the hölder inequality where p=q=2
equivalent:
all norms on C^n are equivalent, meaning if ||.||α and ||.||β are norms on C^n then there exist positive constants δ1 and δ2 such that δ1||x||α<=||x||β<=δ2||x||α for all x in C^n
vector norms and convergence:
a sequence {v^k} of vectors in C^n converges to a vector v with respect to the vector norm ||.|| iff lim(k->∞)(||v^(k)-v||=0), choice of norm doesn’t matter cause they’re equivalent
matrix norm:
a function ||.||:C^(mxn)->R that satisfies the matrix versions of the vector norm properties (just swap x with A and y with B or smth)
frobenius norm:
||A||F=((m)Σ(i=1)(m)Σ(j=1)|aij|^2)^(1/2)=(trace(A*A))^(1/2)
subordinate:
👀
some matrix norms are subordinate to (aka induced by) vector norms. given a vector norm, the corresponding subordinate vector norm is defined by ||A||=max(||Ax||/||x||), x!=0
matrix p-norm:
||A||p=max(||Ax||p/||x||p), x!=0
max column sum:
||A||1=max(||Ax||1/||x||1)=max((m)Σ(i=1)|aij|)
max row sum:
||A||∞=max(||Ax||∞/||x||∞)=max((n)Σ(j=1)|aij|)=||A^T||1