MT - 01. Intro and GE Models Flashcards

1
Q

Key Topic Equation:

A

• Consumption Euler equation  Expected growth/decline of consumption is linked to discount factor and rate of return R (Once we have a shape of utility function)

  • Equate MU of Ct across all periods
  • MRS = MRT
  • Lagrangian = Shadow value interpretation
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

• Kaldor stylised facts, basic measure of a model performance vs data

Kaldor (1957)

A
  1. Output p/worker ↑ at fixed rate that doesn’t diminish over time
  2. Capital p/worker ↑ over time
  3. Real wage ↑ over time
  4. Capital output ratio ≈ constant (1 + 2 = 4)
  5. Return on capital ≈ constant
  6. Share of K and L in net income ≈ constant
  7. Consumption and Investment: GDP ratios = constant – “Great Ratios”
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

• Business cycle facts:

A
  1. Consumption smoother than output
  2. Hours volatility ≈ GNP volatility  Cycle driven primarily by variation in hours
  3. Employment volatility > Hours volatility  Extensive margin more important
  4. Productivity slightly procyclical
  5. Wage volatility < Productivity volatility
  6. Wages and output uncorrelated  Hard for simple models to explain!
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Filters

A

• Filters used to distinguish trend and cycle components of data series

HP
Bandpass

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

DSGE

A

• DSGE Modelling: Expectations are crucial, work by flipping Frisch Slutsky paradigm in reverse
- Flux

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

GE

A

General Equilibrium

  • All individuals satisfy their CEE
  • Markets clear and the interest rate adjusts
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Hall (1978)

A

– Euler equation, consumption growth unpredicted by income growth but could be forecast by stock market prices

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Hamilton (2017)

A

Dangers of a HP Filter are spurious dynamics

How well did you know this?
1
Not at all
2
3
4
5
Perfectly