modulo moment Flashcards
congruent modulo n:
a and b are congruent modulo n (a==b mod n) if n divides a-b
modulo equivalence classes:
[r], where 0<=r<=n-1 are the remainders of some integer n, set of all these remainders is Zn
unit:
an element [a] in Zn is a unit if there exists [b] such that [a][b]=[b][a]=[1], so [a] has a multiplicative inverse, Un is the set of all units in Zn
units and gcds:
[a] is a unit in Zn iff gcd(a,n)=1
Un the group:
abelian under multiplication modulo n w/ identity element [1]
wilson’s theorem:
a positive integer p is prime iff (p-1)!== -1 mod p
euler’s function:
ϕ(n) is the no. of positive integers a <= n w/ gcd(a,n)=1
ϕ(p^m):
(p-1)p^(m-1)
ϕ(mn):
ϕ(m)ϕ(n) when m,n coprime
ϕ(n), n w/ prime factorisation p1^m1…pk^mk:
ϕ(n)=ϕ(p1^m1)…ϕ(pk^mk)=p1^(m1-1)(p1-1)…pk^(mk-1)(pk-1)
(d|n)Σϕ(d):
n
euler’s theorem:
a,n positive integers w/ gcd(a,n)=1, then a^(ϕ(n))==1 mod n
fermat’s little theorem:
p prime, a an integer not divisible by p, a^(p-1)==1 mod p