Module 1.2 Goodness of Fit and Hypothesis Tests Flashcards
Total sum of squares (SST)
(actual Y values - mean Y value)^2
Regression sum of squares (RSS)
(predicted Y values - mean Y value)^2
Sum of squared errors (SSE)
(actual Y values - predicted Y values)^2
Total variation =
explained variation + unexplained variation
SST =
RSS + SSE
RSS
explained variation
SSE
unexplained variation
degrees of freedom of explained variation
1
degrees of freedom unexplained variation
n - 2
total degrees of freedom
n - 1
mean square regression (MSR)
= RSS
Mean squared error (MSE)
= SSE/(n - 2)
k =
number of slope parameters (degrees of freedom explained variable)
standard error of estimate (SEE)st
square root of MSE
percentage of total variation of the dependent variable explained by the independent variable
R^2