MODULE 1 Flashcards
CONTINUOUS TIME SIGNAL
This is a signal whose independent variable is time “t”.
DISCRETE-TIME SIGNAL
This is a signal whose independent variable is discrete-time “n”.
SCALING PROPERTY
δ(-at+b)= 1/|a| δ(t-b/a)
INTEGRAL
∫_(-∞)^∞▒〖δ(t)dt=1 〗
SAMPLING PROPERTY
x(t)δ(t-k)=x(k)δ(t-k)
SIFTING PROPERTY
∫_(-∞)^∞▒〖x(t)δ(t-k)dt=x(k)〗
ENERGY IN CT
∫_(-∞)^∞▒〖|x(t)|^2 dt 〗
POWER IN CT
1/T ∫_T^∞▒〖|x(t)|^2 dt 〗
TRIANGULAR
E=(a^2 b)/3
SQUARE
〖E= a〗^2 b
CURVE
E=(a^2 b)/2
(t-k)u(t-k)
r(t-k)
V_RMS
√P
∫_0^∞▒〖〖ae〗^(-bt) 〗
a/b
f(∝t)
E/∝
f(t/∝)
|∝|E
f(t±k)
E
∝f(t)
∝^2 E
g(∝t)
P
g(t/∝)
P
g(t±k)
P
∝g(t)
∝^2 P
ENERGY IN DT
∑_(-N)^N▒|x(n)|^2
POWER IN DT
1/(2N+1) ∑_(-N)^N▒|x(n)|^2
SUMMATION
∑_(N=∞)^∞▒〖δ(n)=1〗
TIME SCALING
δ(∝n)= δ(n)
SUMMATION PROPERTY
∑_(N=n_1)^(n_2)▒〖x(n)δ(n-k)=1〗
NOTE: k ∈ n_1& n_2
MIXED OPERATIONS
δ(an+b)= δ(n+b/a)
NOTE: b/a∈Integer
SAMPLING PROPERTY
x(n)δ(n-k)=x(k) or 0
EVEN SIGNAL
x_e (t)=(x(t)+x(-t))/2
ODD
x_o (t)=(x(t)-x(-t))/2
RECTANGULAR SIGNAL
x(t)=ARect(t/T)
TRIANGULAR SIGNAL
x(t)=ATri(t/T)
SINC SIGNAL
sinc(t)=((sin(πt))/(π(t)))
SAMPLING SIGNAL
sa(t)=((sin(t))/t)
f_o
1/T_o
〖ω〗_o
2π/T_o
T_o
2π/ω_o
ω_o
HCF/LCM
N_o
2π/ω_o
STATIC AND DYNAMIC
STATIC- present output input
DYNAMIC- past and future
CAUSAL AND NON-CAUSAL
CAUSAL- past and present input output
NON-CAUSAL- future
LINEAR AND NON-LINEAR
Multiplying coefficients= LINEAR
Time Scaling= LINEAR
Summation of Time Shifted= LINEAR
Added/ subtracted term= NON-LINEAR
TIME VARIANT AND TIME INVARIANT
Time Scaling and Time Folding= TV
Coefficient should be constant.
Added/ subtracted time dependent term= TV
Piecewise=TV
STABLE AND UNSTABLE
Follow BIBO criteria
CONVOLUTION INTEGRAL
y(t)=∫_(-∞)^∞▒x(τ)h(t-τ)dτ
LIMITS OF CONVOLUTION
x(t)*h(t)=a+c<t<b+d
TIME SHIFTING IN CV
y(t-a-b)=x(t-a)*h(t-b)
AREA OF CONVOLUTION
y(t)=∫(-∞)^∞▒〖x(t)h(t)dt=〗 ∫(-∞)^∞▒x(t)dt∙∫_(-∞)^∞▒h(t)dt
TIME SCALING IN CV
1/|a| y(t)=x(at)*h(at)
TIME FOLDING IN CV
y(-t)=x(-t)*h(-t)
AMPLITUDE SCALING IN CV
aby(t)=ax(t)*bh(t)
x(t)*δ(t)
x(t)
x(t)*δ(t-k)
x(t-k)
x(t)*u(t)
∫_(-∝)^∝▒〖x(t)dt〗
u(t)*u(t)
r(t)