Midterm1 Flashcards
Integration by parts formula
uv- integral v du
LIATE
Logarithmic,Inverse Trig, Algebraic, Trig, Exponential
if integral ( p(x)sin(ax))
let u = p(x) du=the rest
sqrt( a^2 - x^2)
sub with x=asin(theta), identity: cos^2(theta)= 1- sin^2(theta)
sqrt(a^2 +x^2)
sub with x=atan(theta) sec^2(theta) = 1+tan^2(theta)
sqrt(x^2 - a^2)
sub with x=asec(theta) tan^2(theta)=sec^2(theta)-1
Integrating rational functions
if degree P(x)>=Q(x) use long division
otherwise use partial fractions
when doing partial fractions, denominator has (x-2)^2
do a variable over each power up to 2
when doing partial fractions, denominator when factored has irreducible quadrativ
make it BX+C/irreducible.
ODE
ordinary diff eq- equation containing a fcn of one variable and one or more derivatives of that fcn
order of an ODE
order of the highest derivative
Eullers Method equation
yn = yn-1+ h * F(xn-1,Yn-1)
I(x) in diffeq
e^(integral(P(x))dx)
standard form of linear 1st order ODE
dy/dx + yP(x) = Q(x)
solve a linear 1st order ODE
y* I(x) = integral(Q(x) I(x) dx)
d/dx sinx
cosx
d/dx cosx
-sinx
d/dx tanx
sec^2x
d/dx cotx
-csc^2x
d/dx secx
secxtanx
d/dx cscx
-cscxcotx
d/dx sin-1(x)
1/sqrt(1-x^2)
d/dx tan-1(x)
1/(1+x^2)
d/dx cost-1(x)
-1/sqrt(1-x^2)
d/dx cot-1(x)
-1/1+x^2
integral 1/ax+b
(1/a)ln(ax+b) +C
integral tanx
-lnI(cosx)+c
integral secx
ln(secx+tanx)+c
range of arcsin
pi/2 to -pi/2
range of arccos
0 to pi
cycloid
x=r(theta - sin(theta))
y=r(1 - cos(theta))
equation for dy/dx parametrics
=(dy/dt) / (dx/dt) if dx/dt is not 0
area under parametric curve
A = integral a-b ( y(t) * x'(t) dt) wher where f(t) =x
if dx/dt =0and dy/dt=0 what is dy/dx
undefined