Mems Flashcards

1
Q

Lost four values of ln function

A
Ln(-1)=DNE
Ln(0)=DNE
Ln(1)=0
Ln(e)=1
Ln(9)=2
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What is the first step to find a limit

A

Plug in the X value

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

If 1st step to finding limit doesn’t work, what do you do?

A

a. Simplify, them plug in x value

b. Find derivative of both top and bottom

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

F’ (cosu)

A

-sinu•u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

F’(sinu)

A

Cosu•u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

F’(secu)

A

Secu tan u • u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

F’(cscu)

A

-cscu cotu • u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

F’(tanu)

A

Sec^2 u • u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

F’(cotu)

A

-csc^2 u • u’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

0/0 means what?

A

Hole limit exits

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

0/a means what

A

Vertical asymptote, limit DNE

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Function f(x)=x^2+x+4, interval [1,5], 15, can c=30?

A
F(1)=6, f(5)=34
Since f(x) is continuous and F(1)=6 and f(5)=34 and IVT, some value of c in the interval [1,5] will be 30
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

How do you find a horizontal asymptote

A

Plug infinity and -infinity into highest exponent

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Formula to find tangent line function and what do you plug in

A

Equation: y-y1=m(x-x1)
Need: x1, y1, m

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Position, velocity, acceleration

A

S(t)=
V(t)=s’(t)
A(t)=a’(t)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What does it mean for a particle to be at rest?

A

V(t)=0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Speed = what?

A

|v(t)|

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

d/dx (fg) where f and g represent functions

A

Fg’+f’g

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

d/dx (f/g) where f and g are functions

A

Gf’-g’f
———-
G^2

20
Q

V=1/3(pi)r^2•h, find equation of rate of change to

A

V’=(1/3)pi (r^2 h + 2rr’h)

21
Q

A=4 pi r, fond equation of rate of change

A

A’=8 pi r • r

22
Q

d/dx lnu

23
Q

d/dx log(sub a)X

A

u’/(ulna)

24
Q

Find dy/dx x^2 y+3x=4y^2 - 5

A
1)take derivative
x^2 y’+2xy+3=8yy’
2)get y’ alone
2xy+3=8yy’-x^2 y’
3)factor out y’
2xy+3=y’(8y-x^2)
4)solve for y’
(2xy+3)/(8y-x^2)=y’
25
f and g are inverses. F(3)=6, f’(3)=-7. Find g and g’.
F(x): (3,6) m=-7 G(x): (6,3) m=-1/7 G(6)=3, g’(x)=-1/7
26
F(g(x))=x. A point and slopes for f(x) and g(x)
F(x): (x,y) m= ^y/^x | G(x): (y,x) m= ^x/^y
27
Arccosu or cos^-1 u
-u’/ (square root of) 1-u^2
28
Arctanu or tan^-1 u
u’/1+u^2
29
Arcsinu or sin^-1 u
u’/ (square root of) 1-u^2
30
What makes a function concave up?
F”>0 | Sloped increase
31
What does it mean if f”(x)>0
F(x) concaves up | Slopes increase
32
What does it mean if f”(x)<0
F(x) concaves down | Sloped decrease
33
What is an inflection point for R(x)
R”(x) changes signs
34
What os the definition of differentiable
F’ is defined with smooth gradual changes
35
What is the definition of twice-differentiable
F’ and f” are defined with smooth gradual changes
36
How do you find a critical point for f(x)
F=0 or f=DNE
37
List all x-values for CPs and relative extrema for f’ graph (in photos)
Cp: x=2,4,6 Max: x=4 Min: x=6
38
Lost x values for all inflection points for graph in photos
X=2,3,5
39
Where is function increasing/decreasing for graph in photos
Inc: (-infinity, 1) (6, infinity) Dec: (4,6)
40
Where is function concave up/down in graph in photos
Up: (2,3)(5, infinity) Down: (-infinity,2)(3,5)
41
What os the 2nd derivative test for rel max-min for function g(x)
Plug CPs into f” F”(cp)>0 : rel min F”(cp)<0 : rel max
42
How do you calculate an abs min/max on [a,b] for f(x)
F(a), f(cp), f(b)
43
If only one cp what is easier way to find abs min/max over interval [a,b]
Number line +|- is abs max | Number line -|+ is abs min
44
When does acceleration increase
a’>0
45
d/dx u^n
nu^(n-1) • u’