Membrane Carriers Flashcards
What is a carrier vs a channel? How do they compare in size / speed?
Carrier - bind the solutes and moves via conformation change - slower than channel, especially when not using facilitated diffusion
Channel: Allow diffusion, do not undergo conformational change, much faster
How is it useful that carriers are reversible?
They can go both directions, although they normally go one direction under physiological conditions. Coupled carriers can utilize energy to push against gradients and create electrochemical gradients
What is competitive vs non-competitive inhibition?
Competitive - chemically related solute competes for active site
Non-competitive inhibition - ligand binds to a separate part of site but is not transported
How can the transport of carriers be described?
In terms of enzyme kinetics. They have high temperature coefficients (act faster every 10 degrees Q10). Described by Michaelis-Menten Kinetics
What is active vs passive transport?
Active - utilizes energy, either ATP or electrochemical gradient, to move solute
Passive - driving force is difference in electrochemical potential of transported species. Cannot create or maintain a concentration gradient with this (used for polar + charged solutes)
What type of carrier is the GLUT? How can it be described?
D-glucose carrier - facilitated diffusion (passive transport)
Net flux driven by desire to equilibrate glucose across cellular compartments. The transporter allows diffusion much faster than simple diffusion.
Transport described by simple Michaelis-Menten kinetics
What is Km? What does it measure?
The concentration of substrate for which an enzyme works at 1/2 Vmax. It measures affinity.
Why is facilitated diffusion hyperbolic, and simple diffusion linear?
Simple diffusion - only a function of extracellular glucose concentration
Facilitated diffusion - a function of carrier affinity as well as extracellular glucose concentration
What is the simple enzyme kinetics equation?
v = (Vmax) / (1 + (Km / C))
C = concentration of substrate Km = concentration of substrate for 1/2 Vmax v = rate of unidirectional influx
Why do GLUT2 transporters in the liver have a higher Km than GLUT4 transporters in skeletal muscle / adipose?
Because you want to keep liver D-glucose carriers sensitive until higher glucose levels. If you want more uptake of glucose in other tissues, simply increase the absolute number of carriers at the cell surface.
What is primary active transport vs secondary active transport?
Primary - Expend ATP to directly move something / create a gradient
Secondary - Use electrochemical gradient created from ATP expenditure to symport / antiport a solute against its concentration gradient
What is the normal stoichiometry for Na,K-ATPase?
3 Na+ out
2 K+ in
What is the pump / leak model?
Metabolic energy used to create ion gradients. Energy is stored in gradients. Energy leaks out when it is utilize for active transport of other solutes.
I.e. co-transport of Na+ and amino acids
Na+/H+ exchanger to regulate pH
Regulation of Ca+2 via Na+/Ca+2 exchanger
What are the subunits of the Na,K-ATPase and why is this important?
Beta-subunit stabilizes alpha subunit
Alpha subunit binds the ions, has the ATPase, and binds digitalis (cardiac glycoside)
There are 4 isoforms of alpha and 3 of beta, so many types of these carriers
What is the function of digitalis, and why does hypokalemia increase its toxicity?
Medicine given in heart failure which partially inhibits Na+,K+ATPase by binding E2 confirmation, competing with K+. It decreases the Na+ gradient, allowing less Ca+2 to be pumped out, increasing the amount of muscle contraction
Hypokalemia is bad when using digitalis because there is not enough competition by K+ at the E2 site, making it dangerous.