Maths Flashcards

1
Q

Moivre

A

(cosx + isinx)^n=cos(nx)+isin(nx)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Euler

A

cos(x)=[exp(ix)+exp(-ix)]/2

sin(x)=[exp(ix)-exp(-ix)]/2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

tan(a+b)

A

[tan(a)+tan(b)]/[1-tan(a)tan(b)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

1/cos²(x)

A

1+tan²(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

cos(2a)

A

cos²(a)-sin²(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

sin(2a)

A

2sin(a)cos(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

tan(2a)

A

2tan(a)/(1-tan²(a))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Formule de Taylor Young

A

Soit f de classe C^n sur un intervalle I, alors pour tout a€I :
pt x€I, f(x)=∑(k=0..n)(1/k!)(x-a)^k*f^(k)(a) + o(en a)(x-a)^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Taylor RI

A

Soit f de classe C^n+1 sur un intervalle I, alors pour tou (a,x)€I² :
f(x)=∑(k=0..n)(1/k!)(x-a)^kf^(k)(a)+∫(a..x)(1/n!)(x-t)^nf^(n+1)(t)dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Taylor Lagrange

A

Soit f de classe C^n+1 sur un intervalle I, alors pour tout (a,b)€I² avec a<b en posant Mn+1 un majorant de |f^(n+1)| sur [a,b]
|f(b)-∑(k=0..n)(1/k!)(b-a)^kf^(k)(a)|≤Mn+1*[(b-a)^(n+1)/(n+1)!]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly