Math scape 5.3 Flashcards
Expand (x + 3)(x − 3). Hence, factorise x2 − 9.
x2 − 9, (x + 3)(x − 3)
Expand (2x + 5)(2x − 5). Hence, factorise 4x2 − 25.
4x2 − 25, (2x + 5)(2x − 5)
Factorise p2 − q2
(p − q)(p + q)
Factorise u2 − v2
(u − v)(u + v)
Factorise x2 − 4
(x − 2)(x + 2)
Factorise 144 − u2
(12 − u)(12 + u)
Factorise e2 − 169
(e − 13)(e + 13)
Factorise 361 − j2
(19 − j)(19 + j)
Factorise 4a2 − 9
(2a − 3)(2a + 3)
Factorise 16e2f2 − 81g2h2
(4ef − 9gh)(4ef + 9gh)
Factorise 2m2 − 18
2(m − 3)(m + 3)
Factorise 80j3 − 125j
5j(4j − 5)(4j + 5)
Factorise 4a2 − 36 as a difference of two squares. Has it been completely factorised?
Why?
(2a − 6)(2a + 6), no — each factor still has a common factor of 2.
Factorise it completely.
4(a − 3)(a + 3)
Factorise 9k2 − 36
9(k − 2)(k + 2)