Math Knowledge Flashcards
Find the diagonal of a square whose area is 9.
Ⓐ. 1.5
Ⓑ. 3
Ⓒ. 3√2
Ⓓ. 9√2
Ⓒ. 3√2 (Note: all sides on a square are the same)
Solution: Area of a Square = ℓ² 9 = ℓ² (√9) = ℓ 3 = ℓ
c² = (a² + b²) = (3² + 3²) = (9 + 9) = 18 c = √18 = √9(2) = 3√2
If 4 + x ≥ 13, what is the value of (x≥)?
Ⓐ. 9
Ⓑ. 17
Ⓒ. 17x
Ⓓ. 4x
Ⓐ. 9
Solution:
4 + x ≥ 13
x ≥ 13 - 4
x ≥ 9
(n + 6)(n + 6) = ?
Ⓐ. n² - 36n - 36
Ⓑ. n² - 12n - 36
Ⓒ. n² + 12n + 36
Ⓓ. n² + 12n - 36
Ⓒ. n² + 12n + 36
Solution:
n + 6)(n + 6) = n(n + 6) + 6(n + 6
(n + 6)(n + 6) = n² + 6n + 6n + 36
(n + 6)(n + 6) = n² + 12n + 36
17 is 8% of what number?
Ⓐ. 212.50
Ⓑ. 136
Ⓒ. 1.36
Ⓓ. 21.25
Ⓐ. 212.50
Solution: 17 = 8% 17/x = 8/100 8x = 1700 x = 1700/8 x = 212.50
Which of the following is an acute angle?
Ⓐ. 109°
Ⓑ. 289°
Ⓒ. 19°
Ⓓ. 199°
Ⓒ. 19°
Solution:
Acute angle
A circle has a diameter of 18 inches. What is its approximate circumference?
Ⓐ. 254.47
Ⓑ. 56.55
Ⓒ. 28.27
Ⓓ. 81.00
Ⓑ. 56.55
Solution: ∅ = 18" Circumference = ∅π Circumference = 18π Circumference = 56.55"
The square root of 64 is?
Ⓐ. √8
Ⓑ. 88
Ⓒ. 8
Ⓓ. 2√8
Ⓒ. 8
Solution:
√64 = 8
Proof:
8 • 8 = 64
8² = 64
(n + 6)(n + 8)=?
Ⓐ. n² - 48n + 48
Ⓑ. n² + 48n - 48
Ⓒ. n² + 14n + 48
Ⓓ. n² - 48n - 48
Ⓒ. n² + 14n + 48
Solution:
n + 6)(n + 8) = n(n + 8) + 6(n + 8
(n + 6)(n + 8) = n² + 8n + 6n + 48
(n + 6)(n + 8) = n² + 14n + 48
Which of the following pairs are supplementary angles?
Ⓐ. 34°, 56°
Ⓑ. 34°, -34°
Ⓒ. 79°, 101°
Ⓓ. 124°, 146°
Ⓒ. 79°, 101°
Solution:
Supplementary angle = 180°
79° + 101° = 180°
What is the area of a triangle with dimensions:
Base = 13
Height = 6
Ⓐ. 39
Ⓑ. 156
Ⓒ. 78
Ⓓ. 19.5
Ⓐ. 39
Solution: Area of a triangle = (1/2)bh AΔ = (1/2)(13•6) AΔ = (1/2)(78) AΔ = 39
Find the slope of the line running through the points (4, 5) and (3, 3).
Ⓐ. 2
Ⓑ. 1/2
Ⓒ. -2
Ⓓ. 1/-2
Ⓐ. 2
Solution: ( 4, 5), ( 3, 3) (x₁,y₁), (x₂,y₂) M = (y₂ - y₁)/(x₂ - x₁) M = (3 - 5)/(3 - 4) M = (-2)/(-1) M = 2/1 M = 2
Solve for 4! (the factorial of ‘4’)
Ⓐ. 16
Ⓑ. 44
Ⓒ. 120
Ⓓ. 24
Ⓓ. 24
```
Solution:
the factorial symbol is an exclamation point
4! = 24
4 • 3 • 2 • 1 = 24
12 • 2 • 1 = 24
24 • 1 = 24
~~~
A circle has a diameter of 2”. What is its approximate area?
Ⓐ. 3.24
Ⓑ. 1.57
Ⓒ. 9.87
Ⓓ. 3.14
Ⓓ. 3.14 (Note: π ≈ 3.14)
Solution: r = d/2 = 2/2 = 1 Area of a Circle = πr² AO = πr² AO = (3.14)(1²) AO = (3.14)(1) AO = 3.14"