Math Flashcards
1/2
0.50 or 50%
1/3
0.33 or 33%
1/4
0.25 or 25%
1/5
0.20 or 20%
1/6
0.167 or 16.7%
1/7
0.142 or 14.2%
1/8
0.125 or 12.5%
1/9
0.111 or 11.1%
1/10
0.10 or 10%
1/11
0.091 or 9.1%
1/12
0.083 or 8.3%
1^2
1
2^2
4
3^2
9
4^2
16
5^2
25
6^2
36
7^2
49
8^2
64
9^2
81
10^2
100
11^2
121
12^2
144
13^2
169
14^2
196
15^2
225
25^2
625
x^(1/2)
Sqrt(x)
x^(1/3)
Cuberoot(x)
Sqrt(2)
1.4
Valentine’s Day
Sqrt(3)
1.7
St. Patrick’s Day
Cuberoot(8)
2
Cuberoot(27)
3
4^(2/3)
=cuberoot(4^2)
=cuberoot(16)
~=2.5
Cos(0)
=(Sqrt(4))/2
=2/2
= 1
Cos(30)
=(Sqrt(3))/2
= 0.87
Cos(45)
=(Sqrt(2))/2
= 0.71
Cos(60)
=(Sqrt(1))/2
= 1/2
= 0.50
Cos(90)
=(Sqrt(0))/2
= 0/2
= 0
Cos(180)
-1
Sin(0)
=(Sqrt(0))/2
= 0/2
= 0
Sin(30)
=(Sqrt(1))/2
= 1/2
= 0.50
Sin(45)
=(Sqrt(2))/2
= 0.71
Sin(60)
=(Sqrt(3))/2
= 0.87
Sin(90)
=(Sqrt(4))/2
=2/2
= 1
Sin(180)
0
Log(10)
1
Log(100)
2
Log(1)
0
Log(0.1)
-1
Log(0.01)
-2
Log(2)
0.30
Log(3)
0.48
Log(A*B)
Log(A) + Log(B)
Log(A/B)
Log(A) - Log(B)
Log(A^N)
N Log(A)
Log(4)
0.6
Log(5)
0.7
Log(6)
0.78
Log(7)
0.85
Log(8)
0.9
Log(9)
0.95
Kaplan log approximation to solve for pH from concentration.
E.g. What is pH when [H+] = 6..5 * 10^-4
–log(m x 10-n) ≈ n – 0.m
E.g.
–log(6.5 x 10-4)
≈ 4– 0.65
≈ 3.35
(Actual value is 3.187)
Kaplan log approximation to solve for concentration from pH.
E.g. What is [H+] when pH = 5.21
n - 0.m ≈ -log(m * 10^-n)
E.g.
pH = 5.21 = n - 0.m
= 6 - 0.79
≈ -log(7.9 * 10^-6)
Actual is 6.17 * 10^-6