MATH 1680 Flashcards
e^2x
()I=
4e
(4e)I=0
e^2x-1
(e^2x-1)I= 2e^2x-1
xe^x
(xe^x)I= (1+x)e^x
(e^x-e^-x)/2
((e^x-e^-x)/2)I= 1/2(e^x+e^-x= (e^x+e^-x)/2
e^x/x
(e^x/x)I= (x3^x-e^x)/x^2
xe^x-e^x
(xe^x-e^x)I= xe^x+e^x-e^x= xe^x
y = e^−5x6
-30x^5e^{-5x^6}
f(x) = e^x^2 + 8
2xe^{x^2+8}
g(x) = 6e√x
3e^sqrt{x}/sqrt{x}
y = x2ex − 2xex + 8ex
x^2e^x+6e^x
Find an equation of the tangent line to the graph of the function at the given point.
g(x) = ex5 − 6x, (−1, e5)
y=-e^5x
Find an equation of the tangent line to the graph of the function at the given point.
y = (e2x − 3)2, (0, 4)
y=-8x+4
Find the second derivative.
f(x) = 7e−x − 9e−7x
Find
dy
dx
implicitly.
x2y − ey − 9 = 0
-\frac{2xy}{x^2-e^y}
Find dy/dx implicitly.
exy + x2 − y2 = 15
-\frac{ye^{xy}+2x}{xe^{xy}-2y}
Find the second derivative.
f(x) = (7 + 4x)e−3x
-24e^{-3x}+36xe^{-3x}+63e^{-3x}
Differentiate.
y =
x
ex
\frac{1-x}{e^x}
Differentiate.
g(x) = 5ex√x
\frac{5e^x+10xe^x}{2\sqrt{x}}
Differentiate.
f(x) =
2 − xex
x + ex
\frac{-e^{2x}-x^2e^x-2-2e^x}{\left(x+e^x\right)^2}
Find an equation of the tangent line to the given curve at the specified point.
y =
ex
x
, (1, e)
y=e
Find the derivative of the function.
f(z) = ez/(z − 8)
e^{\left(\frac{z}{z-8}\right)}\cdot -\frac{8}{\left(z-8\right)^2}
Find the derivative of the function.
f(x) = ln(4 − x6)
\frac{1}{4-x^6}\cdot \left(-6x^5\right)
Find the derivative of the function.
y = (ln(x6))2
\frac{2\ln \left(x^6\right)^2}{\ln \left(x\right)\cdot x}
Find the derivative of the function.
y =
ln(x)
x2
\frac{1-2\ln \left(x\right)}{x^3}
Find the derivative of the function.
y = ln
√(x + 7/x − 7)
-\frac{7}{x^2-49}
Constant Rule
∫k dx = kx + C