MATH Flashcards

1
Q

lnab

A

lna + lnb

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

lna^n

A

nlna

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

ln1/a

A

-lna

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

ln sqrt a

A

1/2 lna

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

lou de bernouilli

A

xi | 0 | 1
pi =P(X=xi) | p | 1-p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

norme de vecteur u(a b c)

A

||u|| = sqrt (a^2 + b^2 + c^2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

colinearite u(x y z). v(x’ y’ z’)

A

x/x’ y/y’ z/z’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

2 plans secants

A

2 plans sont secants si ses vecteurs normaux sont pas colineaires ou ses vecteurs sont orthogonaux

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

concave

A

si - et encima de la fonction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

convexe

A

si + y debajo de funcion

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

si f’ + et f’ -

A

f croi f decroi

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

eqt cartesienne

A

ax + by + cz + d = 0 vecteur normal(a b c)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

produit scalaire orthogonalite

A

xx’ + yy’ + zz’ = 0 orthogonal = perpendiculaire sinon paralelle ou confondu

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

nb de combinaison entre e et f

A

e x f

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

def continuite

A

somme produit quotien ou composees

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

parties d’un ensemble a n elements

A

2^n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

le nombre de groupes de k

A

n!/(n-k)!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

esperance

A

xipi ou np

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

variance

A

E(x^2) - (E(x))^2 ou np(1-p)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

y’ = ay +b

A

Ce^ax -b/a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

y’ = ay + f

A

Ce^ax + f0 f0 solution evidente

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

sacar angulos

A

||u|| x ||v|| x cosU,V = UºV

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

intersection droite et plan

A

{ x = … + t y =
remplazar en eqt cartesienne
te da coef t
remplazar t

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

projection dans un plan

A

AB x AC = AB x AH

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

tangante

A

T = f’(a)(x-a) + f(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

nb d’arrangements possibles dans un ensemble a n elements

A

n!

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

distance(a:p)

A

|axa + bya + cza|/ sqrt(a^2 + b^2 + c^2)
coord de A et vecteur normal de p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

avant de deriver

A

Def intervale et continue

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

avant de systeme

A

E(t;s) € R^2 tq
E(x;y;z) €R^3 tq

30
Q

recuerrence

A

Vn€N Je pose P(n)
Initialisation heredite Je suppose qu’il existe un k € N tq p(k) est vraie conclusion Vn€N

31
Q

limites Unxq^n

A

lin q>1 +8
lim -1<q<1 0
lim -1<q Pas lim

32
Q

deduir graphiquement

A

asymptote, convergante

33
Q

derive U/V

A

U’V - UV’/V^2

34
Q

Chasles

A

AB = AC + CB

35
Q

primitive UxU’

A

U^2/2

36
Q

proimitive U’xU^2

A

U^n+1/n+1

37
Q

derive lnx

A

1/x

38
Q

primitive 1/x

A

lnx

39
Q

primitive lnx

A

xlnx-x

40
Q

derive 1/u

A

-U’/U^2

41
Q

derive lnU

A

u’/u

42
Q

derive U^n

A

nxu’xu^n-1

43
Q

derive sqrtx

A

1/2sqrtx

44
Q

primitive x^n

A

x^n+1/n+1

45
Q

derive 1/x

A

-1/x^2

46
Q

derive x^n

A

nx^n-1

47
Q

integrales par parties

A

[uv] - {uv’

48
Q

relation chasles integrales

A

c^{a + b^{c = b^{a

49
Q

{ kfxdx

A

k{fxdx

50
Q

{fxdx

A

[Fx]

51
Q

{ fx + gx dx

A

{fxdx + { gxdx

52
Q

avant integrales voir

A

si integral + avant def intervale continue

53
Q

integ + quand

A

fx +

54
Q

inegalite de la moyenne

A

m < fx< M
{mdx < {fxdx < {Mdx

55
Q

valeur moyenne integrales

A

U=1/b-a{fxdx

56
Q

E(X+Y)

A

= EX + EY

57
Q

EkX

A

kEX

58
Q

VX+Y

A

VX + VY

59
Q

VkX

A

k^2VX

60
Q

Inegalite de Bienayme Tchebychev

A

p(|X-U|>e) < Vx/e^2
U esperance
e ecart type

61
Q

inegalite de concentration

A

p(|Mn-U|>e) < Vx/ne^2
Mn var alea moyenne
U esperance
e ecart type

62
Q

cos et sin est def sir

A

-1<1

63
Q

cos^2 + sin^2

A

1

64
Q

cercle

A

ft

65
Q

tableau cos sin et x

A

ft

66
Q

cos-x

A

cosx pair Ccos symetrique a 0y

67
Q

sin-x

A

-sinx impaire

68
Q

cospi+x
cospi-x
cospi/2+x
cospi/2 -x

A

-cosx
-cosx
-sinx
sinx

69
Q

sinpi+x
sinpi-x
sinpi/2+x
sinpi/2 -x

A

-sinx
sinx
cosx
cosx

70
Q

sinpi+x
sinpi-x
sinpi/2+x
sinpi/2 -x

A
71
Q

cosa+b

A

cosacosb -sinasinb

72
Q

sina+b

A

sinacosb + cosasinb