Logical Equivalences Flashcards
Domination Laws
P ∨ T = T
P ∧ F = F
Idempotent Laws
P ∨ P = P
P ∧ P = P
Double Negation Law
¬(¬P) = P
Commutative Law
P ∨ Q = Q ∨ P
P ∧ Q = Q ∧ P
Associative Law
(P ∨ Q) ∨ R = P ∨ (Q ∨ R)
P ∧ Q) ∧ R = P ∧ (Q ∧ R
Distributive Law
P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R)
P ∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R)
DeMorgan’s Laws
¬(P ∧ Q) = ¬P ∨ ¬Q
¬(P ∨ Q) = ¬P ∧ ¬Q
Absorption Laws
P ∨ (P ∧ Q) = P
P ∧ (P ∨ Q) = P
Negation Law
P ∨ ¬P = T
P ∧ ¬P = F
Identity Laws
P ∨ F = P
P ∧ T = P
Universal Instantiation
∀xP(x)
∴P(c)
Universal Generalization
P(c) for arbitrary c
∴∀xP(x)
Existential Instantiation
∃xP(x)
∴P(c) for some element c
Existential Generalization
P(c) for some element c
∴∃xP(x)
Universal Modus Ponens
∀x(P(x)→Q(x))
P(a), where a is particular element in the domain
∴Q(a)