Logarithmic, Exponential and Hyperbolic Functions Flashcards
Natural Log
Definition
ln(x) is defined such that
ln’(x) = 1/x
What is the integral of 1/x ?
ln(x) + c
ln(ab)
ln(ab) = ln(a) + ln(b)
ln(1/a)
ln(1/a) = -ln(a)
ln(a/b)
ln(a/b) = ln(a) - ln(b)
ln(a^n)
ln(a^n) = n*ln(a)
What is the integral of g’(x)/g(x)
ln(g(x)) + c
What are the domain and range of ln(x)
domain: (0,∞)
range: R
Exponential
Definition
exp is defined as the inverse of ln(x)
exp(ln(x)) = x
ln(exp(x)) = x
What are the domain and range of the exponential function?
domain: R
range: (0,∞)
What is the differential of the exponential function?
exp’(x) = exp(x)
exp(a+b)
exp(a+b) = exp(a)*exp(b)
exp(nx)
ep(nx) = (exp(x))^n
Formula for x^n in terms of exp and log
x^n = e^(nln(x)) = exp(nln(x))
Differential of n^x
d/dx(n^x) = n^x * log(n)
cosh(x)
cosh(x) = (e^x + e^-x)/2
sinh(x)
sinh(x) = (e^x - e^-x)/2
cosh ²(x)
cosh ²(x) = 1/2 + 1/2cosh(x)
sinh ²(x)
sinh ²(x) = -1/2 + cosh(2x)/2
cosh ²(x) - sinh ²(x)
coosh ²(x) - sinh ²(x) = 1
cosh(2t)
cosh(2t) = 2cosh ²(t) - 1
sinh(2t)
sinh(2t) = 2sinh ²(t) +1
cosh(a*b)
cosh(a*b) = cosh(a)cosh(b) + sinh(a)sinh(b)
sech(x)
1/cosh(x)