line integral Flashcards

1
Q

line integral 定義

A

lim|△s|趨向0 (k=1)to(k=n)的連加 f(x,y,z) (△sk)
若此極限存在,稱此極限為線積分
可寫作:fc f(x,y,z) ds

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q
fc f(x,y,z) ds 改寫
when curve C is < x(t), y(t) , z(t) >
A

ds
= | dr |
= ( (dx)^2 + (dy)^2 + (dz)^2 )^(1/2)
ds/dt
= ( (dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2 )^(1/2)
ds
= ( (x(t))^2 + (y(t))^2 + (z(t))^2 )^(1/2) dt fc f(x,y,z) ds = (t=to f t=t1) f( x(t),y(t),z(t) ) ( (x(t))^2 + (y(t))^2 + (z(t))^2 )^(1/2) dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

line integral 性質

A
1) fc f(x,y,z) ds 
= fc1 f(x,y,z)ds + fc2 f(x,y,z)ds + fc3 f(x,y,z)ds
2) fc k·f(x,y,z)ds 
= k fc f(x,y,z)ds
3) fc [ f(x,y,z) + g(x,y,z) ] ds 
=fc f(x,y,z)ds + fc g(x,y,z)ds
4) f(-c) f(x,y,z)ds 
= - fc f(x,y,z)ds
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

向量場F =
中的 line integral
when C is a smooth curve with direction

A
fc f(x,y,z) ds 
= fc F·u ds
= fc F·( dr/ |dr| ) ds
= fc F·dr
= fc < F1,F2,F3 >·
= fc F1dx +F2dy +F3dz
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

向量場中線積分的物理意義

A

向量場沿著曲線所做的功

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

解向量場中線積分須要注意

A

1) 曲線化參數

2) 注意始點和終點

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

向量場中不同路徑的線積分

A

向量場沿著不同曲線所做的功原則上是不一樣的

在conservative field中沿著不同曲線所做的功是一樣的

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

conservative field

A
在field F(x,y,z) = 中
若能找到or said 存在一個函數
A(x,y,z) 使 
DA/Dx = F1
DA/Dy = F2
DA/Dz = F3
也就是▽A(x,y,z) = F(x,y,z)
則(vector)F(x,y,z) 是conservative field
conservative field 中的線積分將會與路徑無關,只與開始和結束的位置有關
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

conservative field 證明

A

在field F(x,y,z) = 中
dA/dt = (DA/DX)·(dx/dt) + (DA/DY)·(dy/dt) + (DA/DZ)·(dz/dt)
dA = (DA/DX)·dx + (DA/DY)·dy + (DA/DZ)·dz
fc F1dx + F2dy + F3dz
= fc dA
= A(t1) - A(t0)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

conservative field 的性質

A
1)  F(x,y,z) =  必是某函數A( x,y,z )的gradience
▽A = F(x,y,z) = 
2) 封閉曲線的線積分
of F·dr = 0
3) line integral 與路徑無關
4) CURL = 0
How well did you know this?
1
Not at all
2
3
4
5
Perfectly