Limits Flashcards
lim. [f(x)]^g(x). =
x->a
lim. g(x)
x->a
[lim. f(x) ]^
x->a
lim. f[g(x)]=
x->a
f { lim. g(x). }
x->a
lim sin(x-a)/(x-a) = x->a
1
lim tan(x-a)/(x-a)= x->a
1
lim sin^-1x/x =
x->0
1
lim. tan^-1x/x =
x->a
1
lim sin^-1x=
x->a
sin^-1a
lim sinx•/x
x->0
||/180
lim. cos^-1x =
x->a
cos^-1a
lim. tan^-1x=
x->a
tan^-1a
lim. Sin(1/x)/(1/x)=
x->infinity
1
lim. Log(1+x)/x =
x->0
1
lim. Log(1-x)/x =
x->0
-1
lim Loga(1+x)/x = x->0
Logae
lim Loga(1-x)/x = x->0
-logae
lim (e^x - 1)/x =
x->0
1
lim. (a^x-1)/x =
x->0
Log a
lim (e^₹x -1)/x =
x->0
₹
lim. [1 + f(x)]^1/g(x) =
x->a
e ^ lim f(x)/g(x)
lim f(x)^g(x) = x->a
e^lim[f(x)-1]g(x)
(1+x)^n =
1 + nx + n(n-1)x^2/2! + n(n-1)(n-2)x^3/3! +…..
If -1
(x^n - a^n)/(x-a) =
x^(n-1) + x^(n-2)a + x^(n-3)a^2 +…+a^(n-1)
Series of sin x
x - x^3/3! + x^5/5! - x^7/7! + …..
Cos x=
1- x^2/2! + x^4/4! - x^6/6! +….
tan x =
x = x^3/3 + 2/15x^5 + 17/315x^7+…
Log(1+x)=
x- x^2/2 + x^3-3 - x^4/4 +…