Lesson 6 Numpy Flashcards

1
Q

Import numpy and check what version you have

A

import numpy as np
numpy.__version__

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Create an array from this list my_list = [1,2,3]

A

np.array(my_list)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Create an array from the matrix my_matrix = [[1,2,3],[4,5,6],[7,8,9]]

A

np.array(my_matrix)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

my_arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

Add the values 1,2 to the array above.

A

np.append(my_arr, [1,2])

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

my_arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

Delete index 1 from my array

A

np.delete(my_arr, 1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Arrange the numbers in ascending order: another_arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])

A

np.sort(another_arr)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Return evenly spaced values within a given interval. Do this for the values from 0-9

A

np.arange(0,10)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Return evenly spaced values within a given interval. Do this for the values from 0-10 every 2 values

A

np.arange(0,11,2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Generate a matrix of zeros - one row, 3 columns

A

np.zeros(3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Generate a matrix of zeros - 10 rows, 10 cols

A

np.zeros((10,10))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Generate a matrix of ones, 5 rows, 5 cols

A

np.ones((5,5))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Return evenly spaced numbers over a specified interval. Do this for the numbers 0-10 with 3 numbers.

A

np.linspace(0,10,3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Return evenly spaced numbers over a specified interval. Do this for the numbers 0-20 with 50 numbers.

A

np.linspace(0,20,50)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Create an identity matrix for 8 rows.

A

np.eye(8)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Return 3 random numbers (0-1) in an array.

A

np.random.rand(3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Return random numbers (0-1) in a matrix with 4 rows and 4 cols.

A

np.random.rand(4,4)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Return a random sample from the “standard normal” distribution. Do this for 3 numbers.

A

np.random.randn(3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Return a random sample from the “standard normal” distribution. Do this for 3 numbers.

A

np.random.randn(3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Return random integers from 1-99

A

np.random.randint(1,100)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Return random integers from 1-99 as an array for 10 numbers.

A

np.random.randint(1,100,10)

21
Q

Return an array containing the same data with a new shape. Do this for the array arr = np.arange(30). Reshape the array into 5 rows and 6 cols.

A

arr.reshape(5,6)

22
Q

Return an array containing the same data with a new shape. Do this for the array arr = np.arange(30). Reshape the array into 5 rows and 2 cols.

A

rand_arr.reshape(5,2)

23
Q

find the index for the max and min value in the array rand_arr = np.random.randint(0,100,10)

A

rand_arr.argmax()
rand_arr.argmin()

24
Q

Find the max and min value for the array rand_arr = np.random.randint(0,100,10)

A

rand_arr.max()
rand_arr.min()

25
Q

Tell me how to find out the number of elements in a dimension

A

arr.shape

26
Q

How do I find out the number of axes or dimensions in an array.

A

arr.ndim

27
Q

How do I find out the total number of elements of the array.

A

arr.size

28
Q

Tell me the datatype of the object in the array.

A

arr.dtype

29
Q

Specify the datatype to be an integer when making the following matrix. arr_2 = np.ones(2) and then check the datatype.

A

arr_2 = np.ones(2, dtype=int)
arr_2.dtype

30
Q

x = np.array([1, 2, 3, 4, 5, 6]) add a new axis

A

x2 = x[np.newaxis]
x2.shape

31
Q

For the array x = np.array([1, 2, 3, 4, 5, 6]), convert the 1D array to a col vector by inserting an axis along the first dimension. Then show the number of elements in each row and col.

A

col_vector = x[np.newaxis, :]
col_vector.shape

32
Q

For the array x = np.array([1, 2, 3, 4, 5, 6]), convert the 1D array to a row vector by inserting an axis along the first dimension. Then show the number of elements in each row and col.

A

row_vector = x[:, np.newaxis]
row_vector.shape

33
Q

Select the 8th index in this array new_arr = np.arange(0,110,10)

A

new_arr[8]

34
Q

Select the numbers 10,20,40,40 in this array by splicing new_arr = np.arange(0,110,10)

A

new_arr[1:5]

35
Q

new_arr = np.arange(0,110,10) convert everything from 0-40 to 100.

A

new_arr[0:5]=100

36
Q

Multiply everything in this array by 2 new_arr = np.arange(0,110,10)

A

new_arr * 2

37
Q

Change everything in the array new_arr = np.arange(0,110,10) to 88

A

Show Slice again

arr_slice[:]=88

arr_slice

38
Q

Create a copy of the array.

A

new_arr_copy = new_arr.copy()

39
Q

a = np.array([[1,1], [2,2]])

b = np.array([[3,3], [4,4]])

Combine the two arrays vertically

A

np.vstack((a, b))

40
Q

Combine the two arrays horizontally

a = np.array([[1,1], [2,2]])

b = np.array([[3,3], [4,4]])

A

np.hstack((a, b))

41
Q

c = np.arange(1, 25)

Make a new array and split it 3 ways

A

np.hsplit(c,3)

42
Q

np.hsplit(c,3) split your array after the second column here three ways.

A

np.hsplit(c,(2,3))

43
Q

Add, subtract and multiply these two arrays arr_1 = np.array([2,4])
arr_2 = np.ones(2)

A

arr_1 + arr_2
arr_1 - arr_2
arr_1 * arr_2

44
Q

Add all of the elements in the array arr_3 = np.array([1, 2, 3, 4, 5, 6, 7, 8])

A

arr_3.sum()

45
Q

Add the rows in a 2d array arr_4 = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])

A

arr_4.sum(axis=0)

46
Q

Add the columns in a 2d array. arr_4 = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])

A

arr_4.sum(axis=1)

47
Q

Find the unique elements in an array easily mixed_array = np.array([5,5,11,11,2,3,4,8,14,14,15,5])

A

mixed_array = np.array([5,5,11,11,2,3,4,8,14,14,15,5])
unique_vals = np.unique(mixed_array)

48
Q

Find the index positions of unique values in an array mixed_array = np.array([5,5,11,11,2,3,4,8,14,14,15,5])

A

unique_vals_idx = np.unique(mixed_array, return_index=True)

49
Q

Count the number of unique values in an array. mixed_array = np.array([5,5,11,11,2,3,4,8,14,14,15,5])

A

unique_vals_idx = np.unique(mixed_array, return_counts=True)