Lecture 7 Flashcards
classical mechanics
newton’s law of motion:
an object will stay at rest and an object will stay in motion, unless acted upon by a net force
heisenberg uncertainty principle
you can’t know the location and energy (momentum) of an electron at the same time
wave functions
relates to the location of an electron to the amplitude of the wave
corresponds to te energy
probability of finding an electron
each of the wave function is associated with a particular energy, E
these wave functions are known as orbitals, probability of finding an electron
quantum numbers used
orbitals
regions where orbitals are most likely to reside
the probability is given by the solution of Schrodinger’s equation
n
principle quantum number
as distance increases from the nucleus, energy increases
defines the general size and energy (location) of orbital
l
angular momentum quantum number
shape of orbital
l = 0,1,2…n-1
orbitals with the same value of l form a subshell-> break them down into individual orbitals -> with different shapes
orbital shapes
different orbitals have different shapes
different electrons can be found in different locations around the nucleus
l orbitals and number
l = 0, s
1 = p
2 = d
3 = f
shapes of orbitals
check notes
phases
the sign (+/-) of the wavefunction, represented by a change in colour
known as a phase
when the wavefunction changes sign, the middle point is always zero
called an angular node
l = number of angular nodes
m l
magnetic quantum numbers
ml = -1…0…+1
specifies the orientation of the orbital in space
divides the subshell into individual orbitals, which hold electrons
number of orbitals
s = 1
p = 3
d = 5
f = 7
examples
check notes
spin quantum numbers
ms
quantum phenomenon
electrons act as tiny magnets
magnetic moment can be either up or down
corresponds to the spin quantum number
ms = +1/2 or -1/2