lecture 3 and 4 Flashcards
What is an acid and what is a base and what does that mean for absorption?
An acid is a proton donor.
HA = H+ + A-
The protonated form is uncharged and better absorbed
A base is a proton acceptor.
B + H+ = HB+
The protonated form is charged and not well absorbed
What is ion trapping?
At steady state – an acidic drug would accumulate on the more basic side of a membrane and a basic drug on the more acidic side – this is known as ‘ion trapping’.
An example of this is the mothers plasma is 7.4 and so a basic drug the reaction favours the formation of non-ionized drug (proton is easily given off by the drug in the more basic medium) or the B in the HB equation. So this non-ionized molecule will easily cross over to the fetal circulation or breast milk, which is more acidic. In the fetal circulation or breast milk the protonated ionized fraction (the HB+) will predominate and will accumulate because it cannot cross the cell membrane easily.
What is the clinical significance of ion trapping?
Fetus: Basic drugs taken by the mother can accumulate in the fetal circulation and the breast milk and can have harmful effects in the fetus and in the breast-milk fed baby.
Poisoning: Acidification or alkalinization of urine can accelerate the excretion of basic or acidic drugs that have reached toxic concentrations in the body. E.g.
To increase excretion of acidic drugs such as phenobarbital and salicylates, intravenous sodium bicarbonate is given
To increase excretion of basic drugs such as amphetamine, ammonium chloride or ascorbic acid may be given
What is the “first pass effect” or “first pass metabolism” and its clinical significance?
Some drugs are ineffective when given orally – examples: nitroglycerine, nor-adrenaline, insulin
If the drug is completely destroyed before it can be absorbed (e.g. insulin) then it has to be given by the parenteral route. Parenteral route is any other than the oral route (e.g. i.v., i.m., sc., inhalation, rectal etc.). When you give a drug sublingually (like a nitroglycerine tablet) it will be absorbed into the capillaries in the mouth, enter the superior cava and enter the heart and general circulation and distributed to the boy. It thus bypasses the liver and first-pass metabolism.
metabolizing enzymes in the liver and intestin means very little or no drug would reach the general circulation.
What is bioavailability and how would it relate to this first pass effect?
Bioavailability – is the fraction of an orally given drug that reaches the circulation.
Bioavailability = (AUC oral/AUC iv) x 100
(area under curve)
the graph is plasma concentration of drug on y axis and time on x axis.
There are some drugs that bind to things in the bloodstream called?
some drugs bind to plasma proteins!
One example of this is warfarin, Warfarin for example most of it is bound and not free but some drug interactions can caused displacement of binding and more free warfarin causing toxicity.
Drugs compete for binding sites, which are saturable
Displacement of a drug from plasma protein binding generally causes no change in its overall effect or adverse effects (except for drugs which have a very small volume of distribution, i.e., nowhere to go)
What happens if most of the drug is extracellular and there is a plasma protein binding displacing drug in competition with this one?
What if it was intravascular in majority?
Most drug is extravascular, so a change in free plasma drug concentration caused
by displacement from plasma protein binding would be minimal
Most drug is intravascular, so a change in free plasma drug concentration caused
by displacement from plasma protein binding would have significant effects
What is distribution?
After absorption a drug is distributed to various body compartments
Distribution is the REVERSIBLE movement of a drug between body compartments.
What factors affect distribution?
Factors that affect distribution from the general circulation to other tissue compartments are: Ionization Capillary permeability Blood flow Plasma protein binding
What is the capillary permeability like in the spleen and the liver?
In liver and spleen, the capillaries are very leaky.
Drugs leave the capillaries regardless of whether they are poorly lipid soluble, charged, or polar.
In other tissues, selective capillary permeability varies somewhere between the above two extremes.
how does the blood brain barrier affect distribution? what are the clinical implications of this?
Blood-Brain Barrier
Brain capillaries have tight junctions.
Glucose and amino acids have specific carrier-mediated transport systems
Only lipophilic drugs (like alcohol!!) diffuse across brain capillaries (unless they are actively transported across).
The degree to which drugs penetrate the brain should be known to treat diseases of the nervous system properly.
E.g. the amines dopamine and serotonin penetrate brain tissue to a very limited degree but their corresponding acid precursors, L-dopa (to treat Parkinson’s disease) and 5-hydroxytryptophan, respectively, enter with relative ease.
The blood-brain barrier does not work properly in areas of infection or injury.
Tumors of the brain develop new blood vessels and capillaries that have no tight junctions. Substances such as radioactive iodine-labeled albumin penetrate normal brain tissue very slowly, but they enter tumor tissue, and help in diagnosis.
How does blood flow affect distribution?
Drugs reach the majority of tissues via the general circulation.
The rate at which drugs distribute from the bloodstream into the various tissues, depends on the relative blood flow to the various tissues.
Brain, liver, kidneys > skeletal muscle > fat
What are the body fluid compartments like in terms of volume? What is the adult blood volume about?
Total Body Water (60% of body weight) ~ 42 L
2/3 of TBW in intracellular fluid space ~ 28 L
1/3 of TBW in extracellular fluid space ~ 12 L
1/3 of extracellular fluid is intravascular (i.e., plasma)
Adult blood volume: ~ 5L
When we administer a drug, it distributes into many compartments (lipophilic drugs even distribute out of fluids and concentrate in fat), but we normally measure the drug concentration in the blood.
How do you measure the volume distribution of a drug?
Volume of distribution (Vd) = dose administered/plasma concentration
We normally take plasma samples of a drug to calculate Vd.
Example: Dose administered = 500 mg
If the concentration in the plasma is less (e.g. due to high concentration of a lipid soluble drug in fat stores) the Vd will be very high
Plasma concn. = 1 mg / litre
Vd = 500 / 1 = 500 litres
Significance
A high Vd indicates that most of the drug is in the extravascular compartment (e.g. amiodarone)
What if the Vd is low?
If the plasma concentration of a drug is high (e.g. due to high plasma protein binding) its Vd will be low
Plasma concn. 50 mg / litre
Vd = 500 / 50 = 10 litres
Significance
A low Vd indicates that most of the drug is in the vascular compartment (e.g bound to plasma proteins, a drug such as warfarin)