Lecture 3 Flashcards
the heat capacity at constant volume , Cv (formula)
Cv = lim(ΔT->0) (δQ/ΔT)v = (δU/δT)v
the heat capacity at constant pressure, Cp (derivation)
dU = (δU/δT)p dT + (δU/δP)T dP
dV = (δV/δT)p dT + (δV/δP)T dP
substituting into first law
δQ = dU + PdV then taking a factor out of δ/δT)p
gives H = U + PV
with differential form
dH = d(U+PV) = dU + PdV + VdP = δQ + VdP
Cp = lim(ΔT->0) (δQ/ΔT)P = (δH/δT)p
functions of state
U, P, V and H
the enthalpy
H is an energy or a thermodynamic potential. Commonly used for isobaric conditions (dP = 0).
specific enthalpy (derivation)
U2 - U1 = Q - Wd + P1V1 - P2V2
(U2 + P2V2) - (U1 + P1V1) = Q - Wd
ΔH = H2 - H1 = Q - Wd
(h1 - h2) dm/dt + dQ/dt = dWd/dt = Power
Bernoulli’s equation (derivation for comparison)
ΔH = Q - Wd
including kinetic and potential energies
ΔH + Δ(εk + εp)bulk = Q - W
wd = h1 - h2 + 1/2(v1^2 -v2^2) + g(z1 - z2) + q
comparing with bernoulli’s eq
0 = 1/p (P1-P2) + 1/2(v1^2 - v2^2) + g(z1 - z2)
identical no work no heat and no change in internal energy