Lecture 2 - Breeding Technology - Casson Flashcards
Give examples of crop genomes
Wheat - can be hexaploid
Soya - complex genome
Makes breeding difficult!
What are breeders interested in?
TRAITS. They do not care about genes. Purely what it brings to the plant.
What is an elite line?
Plant line with high numbers of positive traits. These can be monogenic such as resistance. Or polygenic (most are) such as height.
What is the plant breeding cycle?
Diagram. Identify plant with desirable trait. Combine with existing variety. Identify improved progeny. Test over multiple generations and environments. Repeat.
Describe the dev pipeline for plants
Large number of plants (150,000) in a few locations. Identify plants with good traits, try them in more locations. Ends up with a few plants in many locations.
This can take 10 years, GM would take 13.
Hence only a few new varieties per year
Why did the Green Revolution come about?
Borlaug was tasked with increasing wheat yield in Mexico.
Many countries turned from importers to exporters of grain.
Describe NB’s process
NB grew plants in two locations - northern (short days) and central highlands (long days).
Many crops at the time were only long day. These plants were being selected under two day lengths. Eventually selected for photoperiod-insensitive, and climate-tolerant crops.
What problems did NB run into?
Need for high amounts of N fertiliser - Haber process allowed this.
Stem breakages - developed semi-dwarf variety.
Allowed more food to be produced, and population boom.
Describe increased agricultural productivity
Increased yield, but land usage has stayed the same.
What are some limits to plant breeding?
Development of potato resistant to late blight took 30 years.
Rust-fungus-resistance in rice cannot be transferred to other plants by traditional breeding methods.
Unintentional gene transfer- see next qu
Describe the problem with unintentional gene transfer + give an example
Traits are linked to others, and you do not want a negative trait spreading to progeny.
Southern Corn Blight. Male corn must be emasculated to prevent selfing - labour intensive (detassling)- so a sterile strain was used.
80% of species were derived from male sterile version, which was susceptible to new corn blight.
The sterility was LINKED to susceptibility to new version of blight.
Give three types of modern breeding technologies
- Marker Assisted Breeding
- Mutation breeding
- TILLING
Describe marker assisted breeding
You have an elite line with lots of good traits. You have a donor line with one good trait, that you would like to introduce to your elite line. You cross them, and perform a series of backcrosses with your initial elite line to enrich the progeny with elite alleles. You use known polymorphisms in the DNA as your marker, this could be the allele itself or nearby polymorphisms. The progeny are checked at each generation, the markers are being used to follow the process. By 6 BCs, 99% elite DNA in progeny.That 1% is ideally the donor trait.
How has marker assisted breeding improved recently?
- DNA sequencing methods make it easier to generate new markers specific to a particular cultivar
- Increased scale + automated DNA extraction makes it much more likely to generate the end product you want
Give an example of marker assisted breeding
SUB1 rice
SUB1A locus identified in submergence-tolerant strain of rice, and was introduced to high-yielding Swarna strain.
The actual gene responsible wasn’t discovered until 2006, , but the Swarna-Sub1 line had already been developed.