Lecture 2 Flashcards
The first derivative
gradient of f
π΅π(π)
Directional derivative
π΅π(π)^π*π
π = direction
second derivative
Hessian Matrix
π―(π) = π΅^2 π(π)
Necessary condition
Statement A is a necessary condition for statement B if (and only if) the falsity of A
guarantees the falsity of B. In math notation: notπ΄βnotπ΅
Sufficient condition
Statement A is a sufficient condition for statement B , if (and only if) the truth of A
guarantees the truth of B. In math notation: π΄βπ΅
Optimality Conditions:
1st Order Necessary
2nd Order Necessary
2nd Order Sufficient
1st Order Necessary : If πβis a local minimum then π΅ππβ=π
2nd Order Necessary: If πβis a local minimum then π΅ππβ=πand π―πβis positive semi definite
2nd Order Sufficient : If π΅ππβ=πand π―πβis positive definite then πβis a local minimum
π(π) is
1. strictly convex
2. convex
3. strictly concave
4. concave
5. neither convex nor concave
π―(π) is
1. positive definite
2. positive semi definite
3. negative definite
4. negative semi definite
5. -
Calculating Eigenvalues
det(π¨-ππ°)=0