Laws and Rules of Algebra Flashcards
Learn them.
Commutative Law for Addition
A + B = B + A
Commutative Law for Multiplication
A * B = B * A
Associative Law for Addition
(A + B) + C = A + (B + C)
Distributive Law
A(B + C) = (A * B) + (A * C)
Associative Law for Multiplication
(A * B) * C = A * (B * C)
Substitution
If A = 2x, and 2B = A, then B = 2 * (2X)
Existential Instantiation
If it ix known to exist, it can be given a name (e.g. there exist an integer, let us call it x). Name must be unique to scope.
Definition of Odd
An integer n is odd if, and only if, n = 2k + 1
Definition of Even
An integer n is even if, and only if, n = 2k, where k is any integer
Theorem
In mathematics, a theorem refers to a statement that is known to be true because it has been proved.
X
Particular but arbitrarily chosen item in domain or set
Products and sums of integers
Where w, x, y, and z are integers, the products and sums of integers will be an integer. Thus (xy + wz) is an integer.
Counterexamples
Counterexamples are used to disprove universal statements
Prime number
A number is prime if, and only if:
x > 1
AND
if n = x * y, then x or y = 1 and y or x = n.
Direct Proof
for every x in set D, if P(X), then Q(x)
Suppose that x is a particular but arbitrarily chosen element of D that makes the hypothesis P(x) true, and then show that x makes the conclusion (Q(x)) also true.
Rational
A real number r is rational if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational.
R is rational <=> there exists integers A and B such that R = A/B and b != 0
Zero Product Property
The product of two numbers is non-zero if neither number is zero.
Rational Integers
Every integer is a rational number of the form x/y
Sum/Diff/Prod Even Integers
Sum, product and difference of any two even integers are even
Sum/Diff of Odd integers
The sum and difference any two odd integers are even.
Product of 2 Odd Integers
The product of two odd integers is odd
Sum of Odd and Even Integers
The Sum of an odd and an even integer is odd
Diff of Odd and Even Integers
Any odd integer minus any even integer is odd. Any even integer minus any odd integer is odd.
Product of Odd and Even Integer
The product of an even integer and an odd integer is even.