Laufzeit Flashcards

1
Q

Insertion Sort

A
  • In Place
  • Best Case: (O(n))
  • Average Case: (O(n^2))
  • Worst Case: (O(n^2))
  • Stabil
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Merge Sort

A
  • Out of Place
  • Best Case: (O(n log n))
  • Average Case: (O(n log n))
  • Worst Case: (O(n log n))
  • Stabil
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Bucket Sort

A
  • Out of Place
  • Best Case: (O(n))
  • Average Case: (O(n))
  • Worst Case: (O(n^2)), wenn alle Elemente in einen einzigen Bucket fallen.
  • Bucket Sort kann stabil sein, wenn die inneren Sortiervorgänge (wie Insertion Sort) stabil sind.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Radix Sort

A
  • Out of Place
    • Best Case: (O(d(n+k))), wobei (k) die Anzahl der Stellen in den Zahlen ist.
    • Average Case: (O(d(n+k)))
    • Worst Case: (O(d(n+k)))
  • Radix Sort ist stabil, wenn der verwendete stabile Sortieralgorithmus (wie Counting Sort) für jede Stelle stabil ist.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Heapsort

A
  • In Place
  • Best Case: (O(n log n))
  • Average Case: (O(n log n))
  • Worst Case: (O(n log n))
  • nicht stabil
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Quicksort

A
  • Out of Place
  • Best Case: (O(n log n))
  • Average Case: (O(n log n))
  • Worst Case: (O(n^2))
  • Nicht Stabil
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Counting Sort

A
  • Out of Place
  • Best Case: (O(n + k)), wobei (k) der Bereich der Eingabewerte ist.
  • Average Case: (O(n + k))
  • Worst Case: (O(n + k))
  • Stabil
How well did you know this?
1
Not at all
2
3
4
5
Perfectly