Kom ihåg Flashcards

1
Q

Limes definition:

A

epsilon > 0 och delta >0;
Ix-cI < delta medför att If(x)-LI < epsilon

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Limes definition (går mot oändlighet):

A

R > 0 och epsilon > 0;
x > R medför att If(x)-LI < epsilon

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Limes definition (oändligt gränsvärde):

A

delta > 0 och B > 0;
Ix-cI < delta medför att f(x) > B

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Tangentens ekvation:

A

y = f(a) +f ‘(a)*(x-a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Normalens ekvation:

A

k = -1/tangentens k

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Derivatans definition:

A

f ‘(x) = lim (h->0) ( f(x+h) - f(x) )/h

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

secx:

A

1/cosx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

cotx:

A

cosx/sinx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

cscx:

A

1/sinx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

d/dx tanx

A

sec^2 (x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

d/dx secx

A

secx * tanx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

d/dx cotx

A

-csc^2 (x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

d/dx cscx

A

-cscx * cotx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Förändring i y-led när delta x är litet:

A

delta y ≈ (dy/dx) * delta x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Medelvärdessatsen:

A

f ‘(c) = ( f(b)-f(a) ) / ( b-a )

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

d/dx f^-1(x)

A

1/f ‘( f ^-1(x) )

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

ln ^-1 (x)

A

exp x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

d/dx loga (x)

A

1 / ( x lna )

19
Q

d/dx arcsin

A

1 / sqrt(1-x^2)

20
Q

d/dx arccos

A

-1/ sqrt(1-x^2)

21
Q

d/dx arctan

A

1/(1+x^2)

22
Q

d/dx arccot

A

-1/(1+x^2)

23
Q

d/dx arcsec

A

1/( IxI * sqrt(x^2-1) )

24
Q

d/dx arccsc

A

-1/( IxI * sqrt(x^2-1) )

25
Q

arcsec x

A

arccos(1/x)

26
Q

arccsc x

A

arcsin(1/x)

27
Q

arccot x

A

arctan(1/x)

28
Q

Felmarginal vid linjär approximation:

A

E(x) = f ‘‘(s)/2 * (x-a)^2

29
Q

Lagrange remainder:

A

En(x) f ‘(n+1)’ x/(n+1)! * (x-a)^(n+1)

30
Q

Definition av Ordo:

A

f(x) = O(g(x)) om If(x)I <= c*Ig(x)I

31
Q

Taylor serie:

A

Pn(x) = f(a) + f ‘(a)*(x-a)……f ‘n’(a)/n! * (x-a)^n

32
Q

Skalär projektion (compu v):

A

(u*v) / IIuII

32
Q

Taylor serie med Ordo notation:

A
33
Q

Vektor projektion (proju v):

A

((u*v) / IIuII^2 ) * u

34
Q

Formel för vinkel mellan två vektorer:

A

(uv) / (IIuIIIIvII) = cos x

35
Q

Area för pararellogram:

A

IIu x vII

36
Q

Area för triangel:

A

(IIu x vII)/2

37
Q

Area för pararellpiped:

A

IIu x vII * compn w = I u*(v x w) I

38
Q

Linjens ekvation i standardform:

A

(x-xo)/a = (y-yo)/b = (z-zo)/c

39
Q

Linjens ekvation i skalär parametrisk form:

A

x = xo + at, y = yo + bt, z = zo + ct

40
Q

Normalens ekvation för en plan med ekvation ax+by+cz=d :

A

N = (a,b,c)

41
Q

Avstånd mellan plan och punkt/plan:

A

I( PQ*N / IINII )I

42
Q

Avstånd mellan linje och punkt/linje:

A

IIPQ x riktningsvektorII / IIriktningsvektorII