Kom ihåg Flashcards

1
Q

Limes definition:

A

epsilon > 0 och delta >0;
Ix-cI < delta medför att If(x)-LI < epsilon

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Limes definition (går mot oändlighet):

A

R > 0 och epsilon > 0;
x > R medför att If(x)-LI < epsilon

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Limes definition (oändligt gränsvärde):

A

delta > 0 och B > 0;
Ix-cI < delta medför att f(x) > B

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Tangentens ekvation:

A

y = f(a) +f ‘(a)*(x-a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Normalens ekvation:

A

k = -1/tangentens k

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Derivatans definition:

A

f ‘(x) = lim (h->0) ( f(x+h) - f(x) )/h

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

secx:

A

1/cosx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

cotx:

A

cosx/sinx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

cscx:

A

1/sinx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

d/dx tanx

A

sec^2 (x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

d/dx secx

A

secx * tanx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

d/dx cotx

A

-csc^2 (x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

d/dx cscx

A

-cscx * cotx

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Förändring i y-led när delta x är litet:

A

delta y ≈ (dy/dx) * delta x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Medelvärdessatsen:

A

f ‘(c) = ( f(b)-f(a) ) / ( b-a )

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

d/dx f^-1(x)

A

1/f ‘( f ^-1(x) )

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

ln ^-1 (x)

A

exp x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

d/dx loga (x)

A

1 / ( x lna )

19
Q

d/dx arcsin

A

1 / sqrt(1-x^2)

20
Q

d/dx arccos

A

-1/ sqrt(1-x^2)

21
Q

d/dx arctan

22
Q

d/dx arccot

A

-1/(1+x^2)

23
Q

d/dx arcsec

A

1/( IxI * sqrt(x^2-1) )

24
Q

d/dx arccsc

A

-1/( IxI * sqrt(x^2-1) )

25
arcsec x
arccos(1/x)
26
arccsc x
arcsin(1/x)
27
arccot x
arctan(1/x)
28
Felmarginal vid linjär approximation:
E(x) = f ''(s)/2 * (x-a)^2
29
Lagrange remainder:
En(x) f '(n+1)' x/(n+1)! * (x-a)^(n+1)
30
Definition av Ordo:
f(x) = O(g(x)) om If(x)I <= c*Ig(x)I
31
Taylor serie:
Pn(x) = f(a) + f '(a)*(x-a)......f 'n'(a)/n! * (x-a)^n
32
Skalär projektion (compu v):
(u*v) / IIuII
32
Taylor serie med Ordo notation:
33
Vektor projektion (proju v):
((u*v) / IIuII^2 ) * u
34
Formel för vinkel mellan två vektorer:
(u*v) / (IIuII*IIvII) = cos x
35
Area för pararellogram:
IIu x vII
36
Area för triangel:
(IIu x vII)/2
37
Area för pararellpiped:
IIu x vII * compn w = I u*(v x w) I
38
Linjens ekvation i standardform:
(x-xo)/a = (y-yo)/b = (z-zo)/c
39
Linjens ekvation i skalär parametrisk form:
x = xo + at, y = yo + bt, z = zo + ct
40
Normalens ekvation för en plan med ekvation ax+by+cz=d :
N = (a,b,c)
41
Avstånd mellan plan och punkt/plan:
I( PQ*N / IINII )I
42
Avstånd mellan linje och punkt/linje:
IIPQ x riktningsvektorII / IIriktningsvektorII