Jason Flashcards
<p>What direct and indirect ways neural activity can be measured</p>
<p><u>Directly</u></p>
<ul> <li>AP (Single neruon)</li> <li>Local Field Potentials (Summed activity)</li></ul>
<p><u>Indirectly</u></p>
<ul> <li>Metabolic changes</li> <li>Blood flow <ul> <li>Cerebral blood volume</li> </ul> </li> <li>Blood volume <ul> <li>PET/fMRI</li> </ul> </li></ul>
<p>What is the function of fMRI</p>
<p>Localise hemodynamic changes from neural activity.</p>
<p>Why is fMRI popular, contrast with other methods</p>
<ul> <li>Non-Invasive <ul> <li>No needles, unlike PET</li> </ul> </li> <li>Enable human studies</li> <li>Focal <ul> <li>High precision, unlike EEG</li> </ul> </li></ul>
<p>What is the physics behind the basic MRI (fast)</p>
<ul> <li>Hydrogen has a single proton which preccesses around an axis</li> <li>RF pulse, aligns parallel/anti-parallel</li> <li>After swtich off, spins back</li></ul>
<p>Cognitive processes require energy. Where do we get energy and how does it relate to fMRI</p>
<ul> <li>Cognitive Processes = <ul> <li>ATP =</li> <li>Use oxygen from hemoglobin =</li> <li>Reverse ion influxes underlying synaptic potentials and action potentials</li> </ul> </li> <li>fMRI relies on difference inmagnetic responses between oxyhemoglobinand deoxyhemoglobinblood</li></ul>
<p>Oxygenated vs Deoxygenated Blood. Difference in MRI signal</p>
<p><u>Oxygenated</u></p>
<ul> <li>Weakly diamagnetic</li> <li>Does not distort magnetic field</li></ul>
<p><u>Deoxygenated</u></p>
<ul> <li>Paramagnetic</li> <li>Distorts magnetic field</li></ul>
<p>What is the standard practice in analysing BOLD?</p>
<ul> <li><u>Spatial smoothing </u>by 8mm <ul> <li>Allow for group averaging by correspondence across brain</li> </ul> </li> <li>Use g<u>eneral linear mode</u>l to quantify BOLD changes <ul> <li>Correlation between time course of the BOLD signal change in each voxel of the smoothed images with the measure of cognitive function.</li> </ul> </li></ul>
<p>What is the implication of the BOLD response (thus far)</p>
<p><u>Cortical Segregation/Modularity</u></p>
<ul> <li>Explains spatial structure of brain responses</li> <li>'Neo-phrenology'</li></ul>
<p>What is the amptitude of BOLD signal correlated with?</p>
<p><u>Amplitude of the BOLD signal associated with</u></p>
<ul> <li>Local field potential <ul> <li>Large no. of active neurons responsive together</li> </ul> </li> <li>Increases in gamma-band electrical <ul> <li>EEG</li> </ul> </li> <li>Quite often correlated with spike frequency <ul> <li>Animal Studies</li> </ul> </li> <li>Electrocorticographic (ECoG) at mm accuracy</li></ul>
<p>> Confidence that BOLD is associated with activity</p>
<p>What does magnetic suspectibility of blood depend on?</p>
<ul> <li>Blood oxygenation, but also depend on</li> <li>Regional cerebral blood volume (CBV) <ul> <li>Not independent</li> </ul> </li></ul>
<p>What are the main limitations of fMRI (together with elaborations)</p>
<p>1.) Mislocalisation of hemodynamics</p>
<ul> <li>Local changes in oxygen use and blood volume are carried downstream <ul> <li>Mislabel brain region</li> </ul> </li> <li>CBV is useful but most still use BOLD</li></ul>
<p>2.) Slow Changes in hemodynamics</p>
<ul> <li>Might not capture true response</li> <li>Precise neural coupling invisible to fMRI</li></ul>
<p>3.) Uncertainity in type of neurons involved</p>
<ul> <li>Positive BOLD signal could be excitation or inhibitory</li></ul>
<p>4.) Direction of causation is unclear</p>
<ul> <li>Separate region co-active, but does not say how it influence one another</li></ul>
<p>5.) Spatial Limitations (<em>localising)</em></p>
<ul> <li>Vague despite being much better than EEG.</li> <li>Cannot explain layer-dependent activity</li></ul>
<p>6.) Sparse encoding vs population encoding (resolving)</p>
<ul> <li>Spares Encoding: Poor</li> <li>Population Encoding: Good <ul> <li>A BOLD signal driven by a stimulus does not mean that the entire area is used to process that stimulus, or even that class of stimuli</li> </ul> </li></ul>
<p>What are the 3fundamental limitations of fMRI</p>
<ul> <li>Some nerual activity (Magnetic Field) are too small to be localized with fMRI</li> <li>MRI only shows vascular responses to neural activity</li> <li>Conclusions are ambiguous because it could reflect (blood velocity? volume? oxygen?)</li></ul>
<p>What are recent advances in fMRI</p>
<p><u>Multivoxel pattern analysis</u>(Statistical techniques)</p>
<ul> <li>Whole Brain View</li> <li>Does not require spatial smoothing</li></ul>
<p><u>Voxel encoding and population field mapping</u>(Statistical techniques)</p>
<ul> <li>Functional property of neurons</li> <li> <p>Not possible with group averaging</p> </li></ul>
<p><u>Hi Resolution (7T) Scanning</u></p>
<ul> <li>Isolate activity in single cortical column (sub-mm)</li></ul>
<p>What are recent advances in structural MRI</p>
<ul> <li><u>CBV Changes</u> <ul> <li><u></u>Allows resolution of the cortical layer</li> </ul> </li> <li><u>dMRI tractograhy</u> <ul> <li>Connectivity between brain regions using density of fibres <ul> <li>Map of how different brain regions are associated and correlated with one another</li> </ul> </li> </ul> </li></ul>
<p>Movement away from modularity to connectivity</p>
<p>What are the methods for intracanial, extracranial (a)electrical recordings and (b) electrical stimulations</p>
<p><u>Intracranial Recording</u></p>
<ul> <li>Single cell animal studies</li> <li>ECoG</li></ul>
<p><u>Extracranial Recording</u></p>
<ul> <li>EEG</li> <li>ERP</li></ul>
<p><u>Intracranial Stimulation</u></p>
<ul> <li>DCES</li></ul>
<p><u>Extracranial Stimulation</u></p>
<ul> <li>tDCS</li></ul>
<p>Extracellular Recordings of Single Neurons: What did anesthetised and awake behaving studies on anmmal tell us? Can we study multiple neurons?</p>
<p><u>Anaethsized Studies</u></p>
<ul> <li>Sensory and Motor</li></ul>
<p><u>Awake behaviour Studies:</u></p>
<ul> <li>Higher level functions like attention</li></ul>
<p>Mulitple neurons can be studied with electrode arrays</p>
<p>What is Local Field Potential. What is it? What are thecons?</p>
<p><u>LFPs:</u></p>
<ul> <li>Not related to individual neurons <ul> <li>Measures neural activity up to 3mm from electrode</li> </ul> </li> <li>Use same electrocode as single unit recording</li></ul>
<p><u>Cons:</u></p>
<ul> <li>LFPs likely represents summed activity of large numbers of neurones with synchronous input</li> <li>More likely to reflect type cells with dendrites facing in the same direction away from cell body <ul> <li>e.g., pyramidal cells</li> <li>Same type of cells</li> </ul> </li></ul>
<p>ECoG overview. What is it used to clinically</p>
<ul> <li>Uses 2-256 electrocedes in an array placed directly on exposed surface</li> <li>Records LFP (Probably pyramid cells)</li> <li>Used to treat epilepsy by identifying region generating seizures</li> <li>DCES uses the same electrode</li></ul>
<p>ECoG Pros as a Research Tol</p>
<ul> <li>Understanding neural function <ul> <li>High spatial and temporal resolution</li> <li>Both single and multi-unit recording</li> </ul> </li> <li>Confirms electrophysiological recordings from animal models</li> <li>Understanding how indirect methods relate to direct neural responses <ul> <li>BOLD poor temporal</li> <li>EEG poor spatial</li> </ul> </li></ul>
<p>ECoG + BOLD Finger Flexion Results. What is the implication?</p>
<p>7T fMRI prior to ECoG in finger flexion</p>
<p>"<em>to what degree does localisation of neural activity from BOLD correspond to ECoG</em>"</p>
<p><u>Results</u></p>
<ul> <li>High frequency ECoG (65-95Hz) matches localised BOLD</li> <li>BOLD co-localises rapid neural changes at fine spatial scale (mm scale)</li></ul>
<p><u>Implications</u></p>
<ul> <li>Showed that 7T fMRIreliably captures important aspects of neural activity</li></ul>
<p>EEG Overview. What are the cons?</p>
<ul> <li>Electrical activity measured from large numberof synchronous, aligned neurons</li> <li>Usually recording pyramial neurons (sameas LFP)</li> <li>Best for Gyri,not sulci</li></ul>
<p>EEG Pros and Cons</p>
<p><u>Pros</u></p>
<ul> <li>Cheap</li> <li>Good Temporal Resolution</li></ul>
<p><u>Cons</u></p>
<ul> <li>Poor Spatial Resolution</li> <li>Not good for deep structures <ul> <li> <p>Voltage drops off rapidly with distance, so activity from deep sources is difficult to detect</p> </li> </ul> </li></ul>
<p></p>
<p>How does EEG move to ERP</p>
<p>x1000 trials + signal averaging</p>
<p>DCES Overview andCons</p>
<p><u>Overview</u></p>
<ul> <li>Stimulation of Single Neurons <ul> <li>Mostly on awake behaving non-human primates</li> </ul> </li> <li>UsingECoG electrodes to stimulate</li></ul>
<p><u>Cons</u></p>
<ul> <li>Clinical patients limit the basic research <ul> <li>Must have epilepsy</li> <li>No choice in electrode location <ul> <li>Gyri;Biased to seizures</li> </ul> </li> <li>Surgery <ul> <li>Expensive</li> </ul> </li> </ul> </li></ul>
<p>tDCS Overview and Aim</p>
<p><u>Overview</u></p>
<ul> <li>Passing a <u>weak</u> <u>DC current</u> between electrodes placed on the scalp</li> <li>Extra-cranial</li></ul>
<p><u>Aim</u></p>
<ul> <li>Primarily toimprove mental function</li></ul>
<p>tDCS vs other techniques</p>
<ul> <li>Does not require medical intervention (<strong>Non-invasive</strong>)</li> <li>Uses <strong>DC</strong> to influence brain activity</li> <li>Uses <strong>weak current</strong> to influence brain activity</li></ul>
<p>How does tDCS work</p>
<ul> <li>Small current passed between two electrodes on the scalp</li> <li>Assume that current flows though the brain <ul> <li>Neurons under the anode more easily activated than they otherwise would be <ul> <li>Excitation: Anode</li> <li>Inhibition: Cathode</li> </ul> </li> <li>Not generating action potentials, but changing response of neurons</li> </ul> </li></ul>
<p>tDCS pros and cons</p>
<p><u>Pros</u></p>
<ul> <li>Non invasive</li> <li>Cheap to purchase and use</li> <li>Easy to use</li> <li>Safe when using established protocols <ul> <li>Straight forward ethics</li> </ul> </li></ul>
<p><u>Cons</u></p>
<ul> <li>Precise mechanisms elusive</li> <li>Difficult to precisely and selectively stimulatea target brain region</li></ul>
<p>Does scientific evidence suggest tDCS is effective?What is the criticism (of the scientific evidence)?</p>
<p>Meta-analysis found no reliable effect.</p>
<p><u>Criticism of meta-analysis</u></p>
<ul> <li>Not enough studies</li> <li>Hetereogneity of poor designs (gold-rush)</li></ul>
<p>What are the difficulties in establishing whether tDCS is effective?</p>
<ul> <li>High prevalence of “adverse” events = strong placebo</li> <li>No active sham control <ul> <li>Participants can tell whether they're in sham or active</li> </ul> </li></ul>
<p>Has the rapid increase in studies contributed to the tDCS confusion?</p>
<ul> <li>High rates of “new” findings biases against verification</li> <li>Gold rush mentality (citations, funding, no replication)</li></ul>
<p>Has the way we do science contributed to the confusion tDCS. What are the phenomenas?</p>
<p><u>1.) File drawer phenomenon</u></p>
<ul> <li>Publish positive results</li> <li>Ignore negative or non confirmatory results</li></ul>
<p><u>2.) Forking path phenomenon</u></p>
<ul> <li>Lack of specific predictions in the absence of a good understanding of how tDCS works</li></ul>
<p><u>3.) Increase in importance of science communication</u></p>
<ul> <li>Expectation > Truth with single result</li> <li>Single result can define field if widely promoted</li></ul>
<p>What are paradoxical image effects?</p>
<ul> <li>Tiny image difference may change emotion and identity</li> <li>Big image difference have no effect on identity</li></ul>
<p>What are some models of face-processing</p>
<p>(3 questions we can ask when we process faces)</p>
<ul> <li>Figural <ul> <li>Face / non-face</li> </ul> </li> <li>Semantic <ul> <li>General (Gender)</li> <li>Specific (Familiar)</li> </ul> </li> <li>Learnt/Innate</li></ul>
<p>What is viewpoint dependency</p>
<p>Recognition drops with face inversion</p>
<p>What is image volatility?</p>
<p>Recognition drops with reversed contrast</p>
<p>What isIdentity stability</p>
<p>Caricatured faces are often more identifiable than veridical photographs</p>
<p>Evidence thatface recognition is consistent across visual arrangements</p>
<p>Recognition</p>
<ul> <li>Occurs in extreme deformation</li> <li>Depend on external features <ul> <li>(e.g. prosopagnosics)</li> </ul> </li></ul>
<p>Behavioural evidence for a specialised face pathway</p>
<p>1.) Face inversion effect</p>
<p>2.) Holistic processing</p>
<ul> <li>The composite effect</li> <li>The whole-part effect</li></ul>
<p>3.) Neuropsychological evidence</p>
<ul> <li>Prosopagnosia</li> <li>Visual object agnostic with intact face-processing: CK</li></ul>
<p>Behavioural evidence for face-inversion effect. Upright vs invered</p>
<ul> <li>Configural processing for upright faces</li> <li>Featural processing for inverted faces</li></ul>
<p>Behavioural evidence for holistic processing. Composite effect</p>
<p><u>Composite</u></p>
<ul> <li>Slow to identify half of a chimeric face aligned with an inconsistent other half-face <ul> <li> <p>Interference from the other parts of the face</p> </li> </ul> </li> <li> <p>Easier to identify the top half-face when it's misaligned with the bottom one than when the two halves are fitted smoothly together</p> </li> <li>Suggestmandatory processing of whole face</li></ul>
<p></p>
<p>Behavioural evidence for holistic processing. Part-whole. What does it not occur for?</p>
<ul> <li>Better at distinguishing two face parts in the context of a whole face than in isolation</li> <li>Does not occur for controls <ul> <li>inverted</li> <li>scrambled</li> <li>house</li> </ul> </li></ul>
<p>Evidences for expertise in face-inversion</p>
<p><u>Diamond and Carey (1986)</u></p>
<ul> <li>Inversion for houses</li> <li>Inversion for landscapes <ul> <li>Not as much as faces, but the statment that "only faces show inversion effect" is not true</li> </ul> </li> <li>Comparative inversion for dog experts (Not novices)</li></ul>
<p><u>Rossion and Curran (2010)</u></p>
<ul> <li>Greater inversion effect correlates with self-declared car-expertise</li></ul>
<p>Why are greebles good controls?</p>
<p>Face-like properties.</p>
<ul> <li>Small number of parts in common configuration</li> <li>Hard to identify based on single feature</li> <li>Identification is best by using all features and relationships between them</li></ul>
<p>Gauthier and Tarr (1997). Results. What does it suggest.</p>
<p><u>Results</u></p>
<ul> <li>Experts -Defined as someone who could recognise a Greeble’s “gender”, “family”,"name" <ul> <li>Faster</li> <li>Accurate</li> <li>More sensitive to configural changes (Transformed)</li> <li>RT to upright Greebles <em>slower</em> in the <strong>Transformed </strong>Configuration relative to the <strong>Studied</strong> Configuration condition</li> </ul> </li></ul>
<p>Argued for qualitative change in recognition - Understanding the rules of greebles</p>
<p>What did Farah (1990) argue in terms of cases of visual agnosia</p>
<p>Argued for two independent recognition systems</p>
<ul> <li>Structural/Part-Based mechanisms <ul> <li>Associated with “normal” object recognition</li> </ul> </li> <li>Holistic mechanisms <ul> <li>Associated with face recognition</li> </ul> </li></ul>
<p>Is there evidence of a double dissociation for Farah (1990)</p>
<p>Separate modules for face and object recognition</p>
<p><u>(a) Prosopagnosia</u></p>
<ul> <li>Normal object with poor face recognition</li> <li>Usually damage to fusiform gyrus</li> <li>Pure prosopagnosia is rare</li></ul>
<p><u>(b) Visual Object Agnosia</u></p>
<ul> <li>Poor Object with normalface recognition</li> <li>Only CK</li></ul>
<p>How do we measure facial recognition</p>
<ul> <li>Before They Were Famous</li> <li>Cambridge Face Memory Test</li> <li>Cambridge Face Perception Test</li></ul>
<p>BTWF Test on Facial Recognition. What does correct identification require? Flaw?</p>
<ul> <li>59 pictures of celebrities (as children)</li> <li>Correct identification requires generalization across substantial change in the appearance of the face</li> <li>Flaw <ul> <li>Does depend somewhat on prior exposure</li> </ul> </li></ul>
<p>CFMT on Facial Recognition. Flaw?</p>
<ul> <li>6 male faces <ul> <li>3 trained view <ul> <li>Different perpsectives</li> </ul> </li> <li>3 alt forced choice <ul> <li>Which of this faces have you seen before</li> <li>Recognise picture from non-trained views</li> </ul> </li> <li>4 difficultylevels</li> </ul> </li> <li>Flaw <ul> <li>Might be reliant on memory</li> </ul> </li></ul>
<p>CFPT on Facial Recognition.</p>
<ul> <li>Test images at ¾ view</li> <li>6 frontal non-target faces morphed with target (different %) <ul> <li>Can do for upright and inverted faces</li> </ul> </li> <li>Rank from most to least similar</li></ul>
<p>Greeble learning in a prosopagnosic</p>
<ul> <li>Edward <ul> <li>Poor face inversion, no face-inversion effect</li> <li>Normal Greeble recognition performance</li> </ul> </li> <li>Suggests face deficits do not involve brain processes used to acquire Greeble expertise</li></ul>
<p>What are some properties of congenital or developmental prosopagnosia. What are 2 notions on face recognition ability.</p>
<ul> <li>Poor facial recognition <ul> <li><strong>Absence of brain damage</strong> or other cognitive deficits</li> <li><em>note: prosopagnosic is usually FFA damage</em></li> </ul> </li> <li>2%–2.5% population</li></ul>
<p>1.) Healthy/Pathological</p>
<p>2.) Broad (normal) distribution of face recognition ability, with developmental prosopagnosia on lower tail and superrecognisor on upper tail</p>
<p>How do superrecognisors display the face-inversion effect. What does it suggest?</p>
<ul> <li>Perform well on facial recognition task (CFMT and CFPTwith upright)</li> <li>Larger face inversion effect (CFPT with inverted) <ul> <li>Supports <strong>normative</strong> idea that inversion effect is <strong>not qualitative </strong>different processing compared to normals.</li> </ul> </li></ul>
<p>Evidence for face neurons from human adaptation</p>
<ul> <li>Faces show adaptation <ul> <li>Like Neurons</li> </ul> </li> <li>Bistable perception in semi-upright <ul> <li>See one face then the other</li> <li>Suggest neurons adapted to see one face than the otehr</li> </ul> </li></ul>
<p>What are the 3 studies of neural mechanism of face-processing in non-human primates</p>
<ul> <li>Single Cell</li> <li>fMRI</li> <li>Microstimulation</li></ul>
<p>Non-Human Primate Study (1): Single Cell Study in face-processing in non-human primates</p>
<ul> <li>Non-human primate has face neurons <ul> <li>Face cells in IT (fusiform gyrus) responded to an intact face</li> <li>Not selective for individual features presented in isolation</li> </ul> </li></ul>
<p>Non-Human Primate Study (2) :fMRI study in face-processing in non-human primates (READING)</p>
<ul> <li>Identified "Face Area" using fMRI <ul> <li>In temporal lobe</li> </ul> </li> <li>Recorded 400 cells in "Face Area" <ul> <li>97% of visual cells responded exclusively to faces.</li> </ul> </li> <li>Apple and clock showed some response (roundness? property of faces?)</li></ul>
<p>Non-Human Primate Study (3): Micro-stimulation in face-processing in non-human primates. Methods and Results</p>
<p><u>Is IT (Fusiform Gyrus) a face perception area?</u></p>
<ul> <li>Stimulated neurons in IT and influence face/flower perception</li></ul>
<p><u>Results</u></p>
<p>1.)Stiimulation</p>
<ul> <li>Especially 50-100ms</li> <li><em>Higher likelihood</em> to see faces at <em>all levels of noise</em></li></ul>
<p>No stimulation</p>
<ul> <li><em>Equal </em>probability to see face/flower</li></ul>
<p>2.)Stimulation effect greatest for <em>face-sensitive</em> cells within IT</p>
<p>What are the human physiological evidences for specialised facial pathways</p>
<p>1.) MEG</p>
<p>2.) fMRI</p>
<p>3.) ECoG</p>
<p>4.) Stimulation</p>
<p>Human Study (1): MEG Study for face-perception in humans neural.</p>
<p><u>MEG (Cross of EEG and fMRI) </u></p>
<ul> <li>Temporal responses for faces consistently higher M170 compared to cars and shoes</li> <li>No difference between novices and experts <ul> <li>Suggesting signal for faces</li> </ul> </li></ul>
<p>Human Study (2): fMRI Study for face-perception in humans neural.</p>
<p>Manipulaed parts and configuration of faces and houses.</p>
<p><u>FFA</u></p>
<ul> <li>Faces have bigger respones than houses, hands, two-tone-faces</li> <li>Does not depend on changing spaces or parts <ul> <li>Sensitivity to faces</li> </ul> </li></ul>
<p><u>LOC (Lateral Occipital)</u></p>
<ul> <li>Bigger reponse to changes in Parts</li> <li>No difference for faces or house <ul> <li>Insensitive to identity</li> <li>Senstivity to whether 2 images are the same</li> </ul> </li></ul>