IV. Homomorphisms and Normal Subgroups Flashcards
Definition
Conjugate.
Normal subgroup.
Lemma IV.1.3
Equivalences to Normal subgroup.
Lemma IV.1.8
If H subgroup of index 2.
Definition
The set of left cosets.
If H is normal?
Lemma IV.2.1
If N is Normal, then group operation on quotient group is well-defined.
Proof
Lemma IV.2.2
If N Normal, then G/N
Definition
Group homomorphism.
Definition
Group isomorphism.
Kernel, image.
Theorem IV.5.1
How do Ker and Im relate to G and H?
Lemma IV.5.4
If \phi is a homom., \phi is injective iff.
Theorem IV.6.1
The First Isomorphism Theorem
Definition
sign(\sigma) is a homomorphism…
Theorem IV.7.2
A_n and S_n
Lemma IV.8.1
If G, H are cyclic of order…
Lemma IV.8.4
If p prime, then any group of order p…
Definition
Direct product.
Lemma IV.8.5
GxH is a group…
Theorem IV.8.6
The only groups of order 4…